Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 30(8): 2699-2711.e8, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101746

RESUMO

The transcriptional corepressor complex CoREST is one of seven histone deacetylase complexes that regulate the genome through controlling chromatin acetylation. The CoREST complex is unique in containing both histone demethylase and deacetylase enzymes, LSD1 and HDAC1, held together by the RCOR1 scaffold protein. To date, it has been assumed that the enzymes function independently within the complex. Now, we report the assembly of the ternary complex. Using both structural and functional studies, we show that the activity of the two enzymes is closely coupled and that the complex can exist in at least two distinct states with different kinetics. Electron microscopy of the complex reveals a bi-lobed structure with LSD1 and HDAC1 enzymes at opposite ends of the complex. The structure of CoREST in complex with a nucleosome reveals a mode of chromatin engagement that contrasts with previous models.


Assuntos
Proteínas Correpressoras/metabolismo , Histona Desacetilase 1/metabolismo , Histona Desmetilases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Microscopia Crioeletrônica , Desmetilação , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Nucleossomos/metabolismo , Xenopus
2.
Nat Commun ; 11(1): 3252, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591534

RESUMO

MiDAC is one of seven distinct, large multi-protein complexes that recruit class I histone deacetylases to the genome to regulate gene expression. Despite implications of involvement in cell cycle regulation and in several cancers, surprisingly little is known about the function or structure of MiDAC. Here we show that MiDAC is important for chromosome alignment during mitosis in cancer cell lines. Mice lacking the MiDAC proteins, DNTTIP1 or MIDEAS, die with identical phenotypes during late embryogenesis due to perturbations in gene expression that result in heart malformation and haematopoietic failure. This suggests that MiDAC has an essential and unique function that cannot be compensated by other HDAC complexes. Consistent with this, the cryoEM structure of MiDAC reveals a unique and distinctive mode of assembly. Four copies of HDAC1 are positioned at the periphery with outward-facing active sites suggesting that the complex may target multiple nucleosomes implying a processive deacetylase function.


Assuntos
Desenvolvimento Embrionário , Histona Desacetilases/metabolismo , Complexos Multiproteicos/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromatina/metabolismo , Cromossomos de Mamíferos/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Redes Reguladoras de Genes , Heterozigoto , Homozigoto , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Proteínas Nucleares/metabolismo , Domínios Proteicos , Multimerização Proteica
3.
ACS Infect Dis ; 2(5): 352-360, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27231718

RESUMO

The mechanisms that lead to phenotypic antibacterial tolerance in bacteria remain poorly understood. We investigate whether changes in NaCl concentration toward physiologically higher values affect antibacterial efficacy against Mycobacterium tuberculosis (Mtb), the causal agent of human tuberculosis. Indeed, multiclass phenotypic antibacterial tolerance is observed during Mtb growth in physiologic saline. This includes changes in sensitivity to ethionamide, ethambutol, d-cycloserine, several aminoglycosides, and quinolones. By employing organism-wide metabolomic and lipidomic approaches combined with phenotypic tests, we identified a time-dependent biphasic adaptive response after exposure of Mtb to physiological levels of NaCl. A first rapid, extensive, and reversible phase was associated with changes in core and amino acid metabolism. In a second phase, Mtb responded with a substantial remodelling of plasma membrane and outer lipid membrane composition. We demonstrate that phenotypic tolerance at physiological concentrations of NaCl is the result of changes in plasma and outer membrane lipid remodeling and not changes in core metabolism. Altogether, these results indicate that physiologic saline-induced antibacterial tolerance is kinetically coupled to cell envelope changes and demonstrate that metabolic changes and growth arrest are not the cause of phenotypic tolerance observed in Mtb exposed to physiologic concentrations of NaCl. Importantly, this work uncovers a role for bacterial cell envelope remodeling in antibacterial tolerance, alongside well-documented allterations in respiration, metabolism, and growth rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA