Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 171: 164-173, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29526795

RESUMO

Cultured trabecular meshwork (TM) cells are a valuable model system to study the cellular mechanisms involved in the regulation of conventional outflow resistance and thus intraocular pressure; and their dysfunction resulting in ocular hypertension. In this review, we describe the standard procedures used for the isolation of TM cells from several animal species including humans, and the methods used to validate their identity. Having a set of standard practices for TM cells will increase the scientific rigor when used as a model, and enable other researchers to replicate and build upon previous findings.


Assuntos
Técnicas de Cultura de Células , Separação Celular/métodos , Guias como Assunto , Malha Trabecular/citologia , Fatores Etários , Animais , Biomarcadores/metabolismo , Consenso , Feto , Humanos , Doadores de Tecidos , Preservação de Tecido , Coleta de Tecidos e Órgãos , Malha Trabecular/metabolismo
2.
Biophys J ; 101(9): 2139-46, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22067151

RESUMO

The influence of nucleus shape and orientation on the elastic modulus of epithelial cells was investigated with atomic force microscopy. The shape and orientation were controlled by presenting the epithelial cells with anisotropic parallel ridges and grooves of varying pitch at the cell substratum. As the cells oriented to the underlying topography, the volume of the nucleus increased as the pitch of the topography increased from 400 nm to 2000 nm. The increase in nucleus volume was reflected by an increase in the measured elastic modulus of the topographically aligned cells. Significant alterations in the shape of the nucleus, by intimate contact with the topographic ridge and grooves of the underlying cell, were also observed via confocal microscopy, indicating that the nucleus may also act as a direct mechanosensor of substratum topography.


Assuntos
Forma do Núcleo Celular , Núcleo Celular/metabolismo , Módulo de Elasticidade , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Citoesqueleto/metabolismo , Humanos , Microscopia Confocal , Microscopia de Fluorescência
3.
Invest Ophthalmol Vis Sci ; 56(4): 2764-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26066606

RESUMO

PURPOSE: Although corneal curvature plays an important role in determining the refractive power of the vertebrate eye, the mechanisms controlling corneal shape remain largely unknown. To address this question, we performed a comparative study of vertebrate corneal structure to identify potential evolutionarily based changes that correlate with the development of a corneal refractive lens. METHODS: Nonlinear optical (NLO) imaging of second-harmonic-generated (SHG) signals was used to image collagen and three-dimensionally reconstruct the lamellar organization in corneas from different vertebrate clades. RESULTS: Second-harmonic-generated images taken normal to the corneal surface showed that corneal collagen in all nonmammalian vertebrates was organized into sheets (fish and amphibians) or ribbons (reptiles and birds) extending from limbus to limbus that were oriented nearly orthogonal (ranging from 77.7°-88.2°) to their neighbors. The slight angular offset (2°-13°) created a rotational pattern that continued throughout the full thickness in fish and amphibians and to the very posterior layers in reptiles and birds. Interactions between lamellae were limited to "sutural" fibers in cartilaginous fish, and occasional lamellar branching in fish and amphibians. There was a marked increase in lamellar branching in higher vertebrates, such that birds ≫ reptiles > amphibians > fish. By contrast, mammalian corneas showed a nearly random collagen fiber organization with no orthogonal, chiral pattern. CONCLUSIONS: Our data indicate that nonmammalian vertebrate corneas share a common orthogonal collagen structural organization that shows increased lamellar branching in higher vertebrate species. Importantly, mammalian corneas showed a different structural organization, suggesting a divergent evolutionary background.


Assuntos
Colágeno/análise , Córnea/química , Córnea/citologia , Cristalino/anatomia & histologia , Vertebrados/anatomia & histologia , Anfíbios , Anatomia Comparada , Animais , Evolução Biológica , Aves , Córnea/anatomia & histologia , Peixes , Humanos , Imageamento Tridimensional , Mamíferos , Microscopia Confocal , Dinâmica não Linear , Répteis , Especificidade da Espécie , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA