Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Biol ; 141(1): 297-308, 1998 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-9531567

RESUMO

During morphogenesis of the Caenorhabditis elegans embryo, hypodermal (or epidermal) cells migrate to enclose the embryo in an epithelium and, subsequently, change shape coordinately to elongate the body (Priess, J.R., and D.I. Hirsh. 1986. Dev. Biol. 117:156- 173; Williams-Masson, E.M., A.N. Malik, and J. Hardin. 1997. Development [Camb.]. 124:2889-2901). We have isolated mutants defective in morphogenesis that identify three genes required for both cell migration during body enclosure and cell shape change during body elongation. Analyses of hmp-1, hmp-2, and hmr-1 mutants suggest that products of these genes anchor contractile actin filament bundles at the adherens junctions between hypodermal cells and, thereby, transmit the force of bundle contraction into cell shape change. The protein products of all three genes localize to hypodermal adherens junctions in embryos. The sequences of the predicted HMP-1, HMP-2, and HMR-1 proteins are related to the cell adhesion proteins alpha-catenin, beta-catenin/Armadillo, and classical cadherin, respectively. This putative catenin-cadherin system is not essential for general cell adhesion in the C. elegans embryo, but rather mediates specific aspects of morphogenetic cell shape change and cytoskeletal organization.


Assuntos
Caderinas/fisiologia , Caenorhabditis elegans/embriologia , Proteínas do Citoesqueleto/fisiologia , Embrião não Mamífero/fisiologia , Animais , Padronização Corporal/genética , Padronização Corporal/fisiologia , Caenorhabditis elegans/genética , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Movimento Celular , Proteínas do Citoesqueleto/genética , Células Epidérmicas , Epiderme/embriologia , Células Epiteliais/citologia , Epitélio/embriologia , Genes de Helmintos , Proteínas de Helminto/biossíntese , Proteínas de Helminto/genética , Modelos Biológicos , Morfogênese
2.
Curr Biol ; 9(20): 1139-46, 1999 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-10531027

RESUMO

BACKGROUND: During embryonic development, epithelia with free edges must join together to create continuous tissues that seal the interior of the organism from the outside environment; failure of epithelial sealing underlies several common human birth defects. Sealing of epithelial sheets in embryos can be extremely rapid, dramatically exceeding the rate of adherens junction formation by epithelial cells in culture or during healing of epithelial wounds. Little is known about the dynamic redistribution of cellular junctional components during such events in living embryos. RESULTS: We have used time-lapse, multiphoton laser-scanning microscopy and green fluorescent protein fusion proteins to analyze the sealing of the Caenorhabditis elegans epidermis in living embryos. Rapid recruitment of alpha-catenin to sites of filopodial contact between contralateral migrating epithelial cells, concomitant with clearing of cytoplasmic alpha-catenin, resulted in formation of nascent junctions; this preceded the formation of mature junctions. Surprisingly, upon inactivation of the entire cadherin-catenin complex, only adhesive strengthening between filopodia was reproducibly affected. Other ventral epidermal cells, which did not extend filopodia and appeared to seal along the ventral midline by coordinated changes in cell shape, successfully adhered in the absence of these proteins. CONCLUSIONS: We propose that 'filopodial priming' - prealignment of bundled actin in filopodia combined with the rapid recruitment of alpha-catenin from cytoplasmic reserves at sites of filopodial contact - accounts for the rapid rate of sealing of the embryonic epidermis of C. elegans. Filopodial priming may provide a general mechanism for rapid creation of adherens junctions during epithelial-sheet sealing in embryos.


Assuntos
Caderinas/fisiologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/fisiologia , Pseudópodes/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas do Citoesqueleto/fisiologia , Epitélio/embriologia , Feminino , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/metabolismo , Masculino , Microscopia de Fluorescência , Modelos Biológicos , Mutação , alfa Catenina
3.
Mol Biol Cell ; 9(8): 2037-49, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9693365

RESUMO

Members of the MKLP1 subfamily of kinesin motor proteins localize to the equatorial region of the spindle midzone and are capable of bundling antiparallel microtubules in vitro. Despite these intriguing characteristics, it is unclear what role these kinesins play in dividing cells, particularly within the context of a developing embryo. Here, we report the identification of a null allele of zen-4, an MKLP1 homologue in the nematode Caenorhabditis elegans, and demonstrate that ZEN-4 is essential for cytokinesis. Embryos deprived of ZEN-4 form multinucleate single-celled embryos as they continue to cycle through mitosis but fail to complete cell division. Initiation of the cytokinetic furrow occurs at the normal time and place, but furrow propagation halts prematurely. Time-lapse recordings and microtubule staining reveal that the cytokinesis defect is preceded by the dissociation of the midzone microtubules. We show that ZEN-4 protein localizes to the spindle midzone during anaphase and persists at the midbody region throughout cytokinesis. We propose that ZEN-4 directly cross-links the midzone microtubules and suggest that these microtubules are required for the completion of cytokinesis.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/citologia , Ciclo Celular , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/ultraestrutura , Divisão Celular/fisiologia , Clonagem Molecular , Primers do DNA , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Genes de Helmintos , Cinesinas/fisiologia , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/fisiologia , Mitose , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
4.
6.
Dev Biol ; 236(1): 165-80, 2001 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-11456452

RESUMO

The mechanism by which epithelial cells undergo directed rearrangement is central to morphogenesis, yet the regulation of these movements remains poorly understood. We have investigated epithelial cell rearrangement (intercalation) in the dorsal hypodermis, or embryonic epidermis, of the C. elegans embryo by analyzing the die-1(w34) mutant, which fails to undergo normal intercalation. Dorsal hypodermal cells of die-1(w34) homozygous embryos initiate but fail to complete the process of intercalation. Multiphoton microscopy reveals that intercalating cells extend monopolar, basolateral protrusions in their direction of migration; posterior dorsal hypodermal cells in die-1(w34) mutants appear to extend protrusions normally, but fail to translocate their cell bodies to complete rearrangement. Despite abnormal intercalation, the subsequent morphogenetic movements that enclose the embryo with epithelial cells and the process of dorsal cell fusion still occur. However, elongation of the embryo into a wormlike shape is disrupted in die-1(w34) embryos, suggesting that intercalation may be necessary for subsequent elongation of the embryo. Actin filaments are not properly organized within the dorsal hypodermis of die-1(w34) embryos, consistent with intercalation's being a necessary prerequisite for elongation. The die-1 gene encodes a C2H2 zinc finger protein containing four fingers, which likely acts as a transcriptional regulator. DIE-1 is present in the nuclei of hypodermal, muscle, gut, and pharyngeal cells; its distribution suggests that DIE-1 acts in each of these tissues to regulate morphogenetic movements. die-1(w34) mutants display morphogenetic defects in the pharynx, gut, and muscle quadrants, in addition to the defects in the dorsal hypodermis, consistent with the DIE-1 expression pattern. Mosaic analysis indicates that DIE-1 is autonomously required in the posterior dorsal hypodermis for intercalation. Our analysis documents for the first time the dynamics of protrusive activity during epithelial cell rearrangement. Moreover, our analysis of die-1 shows that the events of epithelial cell rearrangement are under transcriptional control, and that early and later phases of epithelial cell rearrangement are genetically distinguishable.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/embriologia , Células Epiteliais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Actinas/biossíntese , Sequência de Aminoácidos , Animais , Northern Blotting , Mapeamento Cromossômico , Clonagem Molecular , Citoesqueleto/metabolismo , Proteínas de Fluorescência Verde , Homozigoto , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Biossíntese de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Transcrição Gênica , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA