Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Small ; 10(21): 4324-31, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25044603

RESUMO

Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor's stadiation, therapy, and early relapsing lesions. Within surface's bio-functionalization and cell's isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient's blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy.


Assuntos
5-Metilcitosina/análise , Biomarcadores Tumorais/análise , Análise Química do Sangue/instrumentação , Ácido Fólico/química , Neoplasias/diagnóstico , Células Neoplásicas Circulantes/metabolismo , 5-Metilcitosina/sangue , 5-Metilcitosina/metabolismo , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Análise Química do Sangue/métodos , Células Cultivadas , Metilação de DNA , Ensaio de Imunoadsorção Enzimática , Ácido Fólico/farmacologia , Genes Neoplásicos , Humanos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Neoplasias/sangue , Neoplasias/genética , Neoplasias/mortalidade , Células Neoplásicas Circulantes/patologia , Propriedades de Superfície , Análise de Sobrevida
2.
Analyst ; 138(24): 7331-40, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24153318

RESUMO

The Raman spectra of biological materials always exhibit complex profiles, constituting several peaks and/or bands which arise due to the large variety of biomolecules. The extraction of quantitative information from these spectra is not a trivial task. While qualitative information can be retrieved from the changes in peaks frequencies or from the appearance/disappearance of some peaks, quantitative analysis requires an examination of peak intensities. Unfortunately in biological samples it is not easy to identify a reference peak for normalizing intensities, and this makes it very difficult to study the peak intensities. In the last decades a more refined mathematical tool, the extended multiplicative signal correction (EMSC), has been proposed for treating infrared spectra, which is also capable of providing quantitative information. From the mathematical and physical point of view, EMSC can also be applied to Raman spectra, as recently proposed. In this work the reliability of the EMSC procedure is tested by application to a well defined biological system: the 20 standard amino acids and their combination in peptides. The first step is the collection of a Raman database of these 20 amino acids, and subsequently EMSC processing is applied to retrieve quantitative information from amino acids mixtures and peptides. A critical review of the results is presented, showing that EMSC has to be carefully handled for complex biological systems.


Assuntos
Aminoácidos/química , Sistemas de Gerenciamento de Base de Dados , Análise Espectral Raman/métodos , Soluções
3.
Nanoscale ; 6(14): 8208-25, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24930780

RESUMO

Super-hydrophobic surfaces are bio-inspired interfaces with a superficial texture that, in its most common evolution, is formed by a periodic lattice of silicon micro-pillars. Similar surfaces reveal superior properties compared to conventional flat surfaces, including very low friction coefficients. In this work, we modified meso-porous silicon micro-pillars to incorporate networks of metal nano-particles into the porous matrix. In doing so, we obtained a multifunctional-hierarchical system in which (i) at a larger micrometric scale, the super-hydrophobic pillars bring the molecules dissolved in an ultralow-concentration droplet to the active sites of the device, (ii) at an intermediate meso-scale, the meso-porous silicon film adsorbs the low molecular weight content of the solution and, (iii) at a smaller nanometric scale, the aggregates of silver nano-particles would measure the target molecules with unprecedented sensitivity. In the results, we demonstrated how this scheme can be utilized to isolate and detect small molecules in a diluted solution in very low abundance ranges. The presented platform, coupled to Raman or other spectroscopy techniques, is a realistic candidate for the protein expression profiling of biological fluids.


Assuntos
Nanopartículas Metálicas/química , Animais , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Rodaminas/química , Soroalbumina Bovina/análise , Soroalbumina Bovina/química , Silício/química , Prata/química , Soluções/química , Análise Espectral Raman , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA