Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Sci ; 45(11): 5117-5127, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38866971

RESUMO

OBJECTIVES: The objectives of this narrative review are to summarize the current state of AI applications in neuroimaging for early Alzheimer's disease (AD) prediction and to highlight the potential of AI techniques in improving early AD diagnosis, prognosis, and management. METHODS: We conducted a narrative review of studies using AI techniques applied to neuroimaging data for early AD prediction. We examined single-modality studies using structural MRI and PET imaging, as well as multi-modality studies integrating multiple neuroimaging techniques and biomarkers. Furthermore, they reviewed longitudinal studies that model AD progression and identify individuals at risk of rapid decline. RESULTS: Single-modality studies using structural MRI and PET imaging have demonstrated high accuracy in classifying AD and predicting progression from mild cognitive impairment (MCI) to AD. Multi-modality studies, integrating multiple neuroimaging techniques and biomarkers, have shown improved performance and robustness compared to single-modality approaches. Longitudinal studies have highlighted the value of AI in modeling AD progression and identifying individuals at risk of rapid decline. However, challenges remain in data standardization, model interpretability, generalizability, clinical integration, and ethical considerations. CONCLUSION: AI techniques applied to neuroimaging data have the potential to improve early AD diagnosis, prognosis, and management. Addressing challenges related to data standardization, model interpretability, generalizability, clinical integration, and ethical considerations is crucial for realizing the full potential of AI in AD research and clinical practice. Collaborative efforts among researchers, clinicians, and regulatory agencies are needed to develop reliable, robust, and ethical AI tools that can benefit AD patients and society.


Assuntos
Doença de Alzheimer , Biomarcadores , Neuroimagem , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/diagnóstico , Humanos , Neuroimagem/métodos , Neuroimagem/normas , Inteligência Artificial , Progressão da Doença , Disfunção Cognitiva/diagnóstico por imagem , Diagnóstico Precoce , Encéfalo/diagnóstico por imagem
2.
J Digit Imaging ; 36(4): 1885-1893, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37106213

RESUMO

Carimas is a multi-purpose medical imaging data processing tool, which can be used to visualize, analyze, and model different medical images in research. Originally, it was developed only for positron emission tomography data in 2009, but the use of this software has extended to many other tomography imaging modalities, such as computed tomography and magnetic resonance imaging. Carimas is especially well-suited for analysis of three- and four-dimensional image data and creating polar maps in modeling of cardiac perfusion. This article explores various parts of Carimas, including its key features, program structure, and application possibilities.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Humanos , Tomografia por Emissão de Pósitrons/métodos , Coração , Imageamento por Ressonância Magnética/métodos , Software , Processamento de Imagem Assistida por Computador/métodos
3.
Brain Sci ; 14(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39199522

RESUMO

Long COVID (Coronavirus disease), affecting millions globally, presents unprecedented challenges to healthcare systems due to its complex, multifaceted nature and the lack of effective treatments. This perspective review explores the potential of artificial intelligence (AI)-guided transcranial direct current stimulation (tDCS) as an innovative approach to address the urgent need for effective Long COVID management. The authors examine how AI could optimize tDCS protocols, enhance clinical trial design, and facilitate personalized treatment for the heterogeneous manifestations of Long COVID. Key areas discussed include AI-driven personalization of tDCS parameters based on individual patient characteristics and real-time symptom fluctuations, the use of machine learning for patient stratification, and the development of more sensitive outcome measures in clinical trials. This perspective addresses ethical considerations surrounding data privacy, algorithmic bias, and equitable access to AI-enhanced treatments. It also explores challenges and opportunities for implementing AI-guided tDCS across diverse healthcare settings globally. Future research directions are outlined, including the need for large-scale validation studies and investigations of long-term efficacy and safety. The authors argue that while AI-guided tDCS shows promise for addressing the complex nature of Long COVID, significant technical, ethical, and practical challenges remain. They emphasize the importance of interdisciplinary collaboration, patient-centered approaches, and a commitment to global health equity in realizing the potential of this technology. This perspective article provides a roadmap for researchers, clinicians, and policymakers involved in developing and implementing AI-guided neuromodulation therapies for Long COVID and potentially other neurological and psychiatric conditions.

4.
Sci Rep ; 14(1): 6086, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480847

RESUMO

Research on different machine learning (ML) has become incredibly popular during the past few decades. However, for some researchers not familiar with statistics, it might be difficult to understand how to evaluate the performance of ML models and compare them with each other. Here, we introduce the most common evaluation metrics used for the typical supervised ML tasks including binary, multi-class, and multi-label classification, regression, image segmentation, object detection, and information retrieval. We explain how to choose a suitable statistical test for comparing models, how to obtain enough values of the metric for testing, and how to perform the test and interpret its results. We also present a few practical examples about comparing convolutional neural networks used to classify X-rays with different lung infections and detect cancer tumors in positron emission tomography images.


Assuntos
Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Tomografia por Emissão de Pósitrons
5.
Sci Rep ; 13(1): 10528, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386289

RESUMO

The aim of this study was to develop a convolutional neural network (CNN) for classifying positron emission tomography (PET) images of patients with and without head and neck squamous cell carcinoma (HNSCC) and other types of head and neck cancer. A PET/magnetic resonance imaging scan with 18F-fluorodeoxyglucose (18F-FDG) was performed for 200 head and neck cancer patients, 182 of which were diagnosed with HNSCC, and the location of cancer tumors was marked to the images with a binary mask by a medical doctor. The models were trained and tested with five-fold cross-validation with the primary data set of 1990 2D images obtained by dividing the original 3D images of 178 HNSCC patients into transaxial slices and with an additional test set with 238 images from the patients with head and neck cancer other than HNSCC. A shallow and a deep CNN were built by using the U-Net architecture for classifying the data into two groups based on whether an image contains cancer or not. The impact of data augmentation on the performance of the two CNNs was also considered. According to our results, the best model for this task in terms of area under receiver operator characteristic curve (AUC) is a deep augmented model with a median AUC of 85.1%. The four models had highest sensitivity for HNSCC tumors on the root of the tongue (median sensitivities of 83.3-97.7%), in fossa piriformis (80.2-93.3%), and in the oral cavity (70.4-81.7%). Despite the fact that the models were trained with only HNSCC data, they had also very good sensitivity for detecting follicular and papillary carcinoma of thyroid gland and mucoepidermoid carcinoma of the parotid gland (91.7-100%).


Assuntos
Neoplasias de Cabeça e Pescoço , Tomografia Computadorizada por Raios X , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Fluordesoxiglucose F18 , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA