Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Biol Chem ; 300(5): 107265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582452

RESUMO

Histidine kinases are key bacterial sensors that recognize diverse environmental stimuli. While mechanisms of phosphorylation and phosphotransfer by cytoplasmic kinase domains are relatively well-characterized, the ways in which extracytoplasmic sensor domains regulate activation remain mysterious. The Cpx envelope stress response is a conserved Gram-negative two-component system which is controlled by the sensor kinase CpxA. We report the structure of the Escherichia coli CpxA sensor domain (CpxA-SD) as a globular Per-ARNT-Sim (PAS)-like fold highly similar to that of Vibrio parahaemolyticus CpxA as determined by X-ray crystallography. Because sensor kinase dimerization is important for signaling, we used AlphaFold2 to model CpxA-SD in the context of its connected transmembrane domains, which yielded a novel dimer of PAS domains possessing a distinct dimer organization compared to previously characterized sensor domains. Gain of function cpxA∗ alleles map to the dimer interface, and mutation of other residues in this region also leads to constitutive activation. CpxA activation can be suppressed by mutations that restore inter-monomer interactions, suggesting that inhibitory interactions between CpxA-SD monomers are the major point of control for CpxA activation and signaling. Searching through hundreds of structural homologs revealed the sensor domain of Pseudomonas aeruginosa sensor kinase PfeS as the only PAS structure in the same novel dimer orientation as CpxA, suggesting that our dimer orientation may be utilized by other extracytoplasmic PAS domains. Overall, our findings provide insight into the diversity of the organization of PAS sensory domains and how they regulate sensor kinase activation.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Histidina Quinase , Domínios Proteicos , Multimerização Proteica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina Quinase/metabolismo , Histidina Quinase/química , Histidina Quinase/genética , Modelos Moleculares , Transdução de Sinais , Vibrio parahaemolyticus/enzimologia , Vibrio parahaemolyticus/genética
2.
Proc Natl Acad Sci U S A ; 119(18): e2117633119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476526

RESUMO

Surface sensing is a critical process that promotes the transition to a biofilm lifestyle. Several surface-sensing mechanisms have been described for a range of species, most involving surface appendages, such as flagella and pili. Pseudomonas aeruginosa uses the Wsp chemosensory-like signal transduction pathway to sense surfaces and promote biofilm formation. The methyl-accepting chemotaxis protein WspA recognizes an unknown surface-associated signal and initiates a phosphorylation cascade that activates the diguanylate cyclase WspR. We conducted a screen for Wsp-activating compounds and found that chemicals that impact the cell envelope induce Wsp signaling, increase intracellular c-di-GMP levels, and can promote surface attachment. To isolate the Wsp system from other P. aeruginosa surface-sensing systems, we heterologously expressed it in Escherichia coli and found it sufficient for sensing surfaces and the chemicals identified in our screen. Using well-characterized reporters for different E. coli cell envelope stress responses, we then determined that Wsp sensitivity overlapped with multiple E. coli cell envelope stress-response systems. Using mutational and CRISPRi analysis, we found that misfolded proteins in the periplasm appear to be a major stimulus of the Wsp system. Finally, we show that surface attachment appears to have an immediate, observable effect on cell envelope integrity. Collectively, our results provide experimental evidence that cell envelope stress represents an important feature of surface sensing in P. aeruginosa.


Assuntos
Parede Celular , Pseudomonas aeruginosa , Biofilmes , Membrana Celular/metabolismo , Periplasma , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
3.
J Bacteriol ; 205(4): e0040722, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37022159

RESUMO

Gram-negative bacteria utilize several envelope stress responses (ESRs) to sense and respond to diverse signals within a multilayered cell envelope. The CpxRA ESR responds to multiple stresses that perturb envelope protein homeostasis. Signaling in the Cpx response is regulated by auxiliary factors, such as the outer membrane (OM) lipoprotein NlpE, an activator of the response. NlpE communicates surface adhesion to the Cpx response; however, the mechanism by which NlpE accomplishes this remains unknown. In this study, we report a novel interaction between NlpE and the major OM protein OmpA. Both NlpE and OmpA are required to activate the Cpx response in surface-adhered cells. Furthermore, NlpE senses OmpA overexpression and the NlpE C-terminal domain transduces this signal to the Cpx response, revealing a novel signaling function for this domain. Mutation of OmpA peptidoglycan-binding residues abrogates signaling during OmpA overexpression, suggesting that NlpE signaling from the OM through the cell wall is coordinated via OmpA. Overall, these findings reveal NlpE to be a versatile envelope sensor that takes advantage of its structure, localization, and cooperation with other envelope proteins to initiate adaptation to diverse signals. IMPORTANCE The envelope is not only a barrier that protects bacteria from the environment but also a crucial site for the transduction of signals critical for colonization and pathogenesis. The discovery of novel complexes between NlpE and OmpA contributes to an emerging understanding of the key contribution of OM ß-barrel protein and lipoprotein complexes to envelope stress signaling. Overall, our findings provide mechanistic insight into how the Cpx response senses signals relevant to surface adhesion and biofilm growth to facilitate bacterial adaptation.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo
4.
Infect Immun ; 90(9): e0031422, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36000875

RESUMO

Citrobacter rodentium is an attaching and effacing (A/E) pathogen used to model enteropathogenic and enterohemorrhagic Escherichia coli infections in mice. During colonization, C. rodentium must adapt to stresses in the gastrointestinal tract, such as antimicrobial peptides, pH changes, and bile salts. The Cpx envelope stress response (ESR) is a two-component system used by some bacteria to remediate stress by modulating gene expression, and it is necessary for C. rodentium pathogenesis in mice. Here, we utilized simulated colonic fluid (SCF) to mimic the gastrointestinal environment, which we show strongly induces the Cpx ESR and highlights a fitness defect specific to the ΔcpxRA mutant. While investigating genes in the Cpx regulon that may contribute to C. rodentium pathogenesis, we found that the absence of the Cpx ESR resulted in higher expression of the locus of enterocyte effacement (LEE) master regulator, ler, and that the genes yebE, ygiB, bssR, and htpX relied on CpxRA for proper expression. We then determined that CpxRA and select gene mutants were essential for proper growth in SCF when in the presence of extraneous stressors and in competition. Although none of the Cpx-regulated gene mutants exhibited marked virulence phenotypes in vivo, the ΔcpxRA mutant had reduced colonization and attenuated virulence, as previously determined, which replicated the in vitro growth phenotypes specific to SCF. Overall, these results indicate that the ΔcpxRA virulence defect is not due to any single Cpx regulon gene examined. Instead, attenuation may be the result of defective growth in the colonic environment resulting from the collective impact of multiple Cpx-regulated genes.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares , Citrobacter rodentium/genética , Infecções por Enterobacteriaceae/microbiologia , Camundongos , Regulon , Virulência/genética
5.
Mol Microbiol ; 111(3): 700-716, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30536519

RESUMO

Envelope-localized proteins, such as adhesins and secretion systems, play critical roles in host infection by Gram-negative pathogens. As such, their folding is monitored by envelope stress response systems. Previous studies demonstrated that the Cpx envelope stress response is required for virulence of Citrobacter rodentium, a murine pathogen used to model infections by the human pathogens enteropathogenic and enterohemorrhagic Escherichia coli; however, the mechanisms by which the Cpx response promotes host infection were previously unknown. Here, we characterized the C. rodentium Cpx regulon in order to identify genes required for host infection. Using transcriptomic and proteomic approaches, we found that the Cpx response upregulates envelope-localized protein folding and degrading factors but downregulates pilus genes and type III secretion effectors. Mouse infections with C. rodentium strains lacking individual Cpx-regulated genes showed that the chaperone/protease DegP and the disulfide bond oxidoreductase DsbA were essential for infection, but Cpx regulation of these genes did not fully account for attenuation of C. rodentium ΔcpxRA. Both deletion of dsbA and treatment with the reducing agent dithiothreitol activated the C. rodentium Cpx response, suggesting that it may sense disruption of disulfide bonding. Our results highlight the importance of envelope protein folding in host infection by Gram-negative pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Citrobacter rodentium/crescimento & desenvolvimento , Citrobacter rodentium/genética , Infecções por Enterobacteriaceae/microbiologia , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/metabolismo , Regulon , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos , Proteoma/análise
6.
J Bacteriol ; 201(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322855

RESUMO

The F plasmid tra operon encodes most of the proteins required for bacterial conjugation. TraJ and ArcA are known activators of the tra operon promoter PY, which is subject to H-NS-mediated silencing. Donor ability and promoter activity assays indicated that PY is inactivated by silencers and requires both TraJ and ArcA for activation to support efficient F conjugation. The observed low-level, ArcA-independent F conjugation is caused by tra expression from upstream alternative promoters. Electrophoretic mobility shift assays showed that TraJ alone weakly binds to PY regulatory DNA; however, TraJ binding is significantly enhanced by ArcA binding to the same DNA, indicating cooperativity of the two proteins. Analysis of binding affinities between ArcA and various DNA fragments in the PY regulatory region defined a 22-bp tandem repeat sequence (from -76 to -55 of PY) sufficient for optimal ArcA binding, which is immediately upstream of the predicted TraJ-binding site (from -54 to -34). Deletion analysis of the PY promoter in strains deficient in TraJ, ArcA, and/or H-NS determined that sequences upstream of -103 are required by silencers including H-NS for PY silencing, whereas sequences downstream of -77 are targeted by TraJ and ArcA for activation. TraJ and ArcA appear not only to counteract PY silencers but also to directly activate PY in a cooperative manner. Our data reveal the cooperativity of TraJ and ArcA during PY activation and provide insights into the regulatory circuit controlling F-family plasmid-mediated bacterial conjugation.IMPORTANCE Conjugation is a major mechanism for dissemination of antibiotic resistance and virulence among bacterial populations. The tra operon in the F family of conjugative plasmids encodes most of the proteins involved in bacterial conjugation. This work reveals that activation of tra operon transcription requires two proteins, TraJ and ArcA, to bind cooperatively to adjacent sites immediately upstream of the major tra promoter PY The interaction of TraJ and ArcA with the tra operon not only relieves PY from silencers but also directly activates it. These findings provide insights into the regulatory circuit of the F-family plasmid-mediated bacterial conjugation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Conjugação Genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator F , Regulação Bacteriana da Expressão Gênica , Óperon , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Deleção de Genes , Regiões Promotoras Genéticas , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Repressoras/genética
7.
J Bacteriol ; 200(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29109189

RESUMO

Proteolysis is carefully regulated to prevent the untimely destruction of critical proteins. In this issue of the Journal of Bacteriology, Kim and colleagues identify YjfN as a proteolytic regulator that stimulates the activity of the DegP/HtrA protease of Escherichia coli (S. Kim, I. Song, G. Eom, and S. Kim, J Bacteriol 200:e00519-17, 2018, https://doi.org/10.1128/JB.00519-17). The suicide destruction and transcriptional regulation of YjfN limit its activity to conditions in which there are likely to be many misfolded substrate proteins present.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas , Escherichia coli , Proteínas de Choque Térmico , Proteólise , Suicídio
8.
Proc Natl Acad Sci U S A ; 112(8): E871-80, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675528

RESUMO

Urinary tract infections (UTIs) are among the most common bacterial infections, causing considerable morbidity in females. Infection is highly recurrent despite appropriate antibiotic treatment. Uropathogenic Escherichia coli (UPEC), the most common causative agent of UTIs, invades bladder epithelial cells (BECs) and develops into clonal intracellular bacterial communities (IBCs). Upon maturation, IBCs disperse, with bacteria spreading to neighboring BECs to repeat this cycle. This process allows UPEC to gain a foothold in the face of innate defense mechanisms, including micturition, epithelial exfoliation, and the influx of polymorphonuclear leukocytes. Here, we investigated the mechanism and dynamics of urothelial exfoliation in the early acute stages of infection. We show that UPEC α-hemolysin (HlyA) induces Caspase-1/Caspase-4-dependent inflammatory cell death in human urothelial cells, and we demonstrate that the response regulator (CpxR)-sensor kinase (CpxA) two-component system (CpxRA), which regulates virulence gene expression in response to environmental signals, is critical for fine-tuning HlyA cytotoxicity. Deletion of the cpxR transcriptional response regulator derepresses hlyA expression, leading to enhanced Caspase-1/Caspase-4- and NOD-like receptor family, pyrin domain containing 3-dependent inflammatory cell death in human urothelial cells. In vivo, overexpression of HlyA during acute bladder infection induces more rapid and extensive exfoliation and reduced bladder bacterial burdens. Bladder fitness is restored fully by inhibition of Caspase-1 and Caspase-11, the murine homolog of Caspase-4. Thus, we have discovered that fine-tuning of HlyA expression by the CpxRA system is critical for enhancing UPEC fitness in the urinary bladder. These results have significant implications for our understanding of how UPEC establishes persistent colonization.


Assuntos
Progressão da Doença , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas/genética , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/fisiologia , Doença Aguda , Animais , Apoptose/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Doença Crônica , Contagem de Colônia Microbiana , Ativação Enzimática , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/metabolismo , Feminino , Proteínas Hemolisinas/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais/genética , Bexiga Urinária/metabolismo , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Infecções Urinárias/genética , Infecções Urinárias/patologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/patogenicidade , Virulência/genética
9.
J Bacteriol ; 199(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760851

RESUMO

The Cpx envelope stress response mediates adaptation to stresses that affect protein folding within the envelope of Gram-negative bacteria. Recent transcriptome analyses revealed that the Cpx response impacts genes that affect multiple cellular functions predominantly associated with the cytoplasmic membrane. In this study, we examined the connection between the Cpx response and the respiratory complexes NADH dehydrogenase I and cytochrome bo3 in enteropathogenic Escherichia coli We found that the Cpx response directly represses the transcription of the nuo and cyo operons and that Cpx-mediated repression of these complexes confers adaptation to stresses that compromise envelope integrity. Furthermore, we found that the activity of the aerobic electron transport chain is reduced in E. coli lacking a functional Cpx response despite no change in the transcription of either the nuo or the cyo operon. Finally, we show that expression of NADH dehydrogenase I and cytochrome bo3 contributes to basal Cpx pathway activity and that overproduction of individual subunits can influence pathway activation. Our results demonstrate that the Cpx response gauges and adjusts the expression, and possibly the function, of inner membrane protein complexes to enable adaptation to envelope stress.IMPORTANCE Bacterial stress responses allow microbes to survive environmental transitions and conditions, such as those encountered during infection and colonization, that would otherwise kill them. Enteric microbes that inhabit or infect the gut are exposed to a plethora of stresses, including changes in pH, nutrient composition, and the presence of other bacteria and toxic compounds. Bacteria detect and adapt to many of these conditions by using envelope stress responses that measure the presence of stressors in the outermost compartment of the bacterium by monitoring its physiology. The Cpx envelope stress response plays a role in antibiotic resistance and host colonization, and we have shown that it regulates many functions at the bacterial inner membrane. In this report, we describe a novel role for the Cpx response in sensing and controlling the expression of large, multiprotein respiratory complexes at the cytoplasmic membrane of Escherichia coli The significance of our research is that it will increase our understanding of how these stress responses are involved in antibiotic resistance and the mechanisms used by bacteria to colonize the gut.


Assuntos
Adaptação Fisiológica , Membrana Celular/fisiologia , Citocromos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli Enteropatogênica/fisiologia , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Estresse Fisiológico , Aerobiose , Grupo dos Citocromos b , Transporte de Elétrons , Óperon
10.
J Bacteriol ; 197(2): 262-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368298

RESUMO

The Cpx pathway, a two-component system that employs the sensor histidine kinase CpxA and the response regulator CpxR, regulates crucial envelope stress responses across bacterial species and affects antibiotic resistance. To characterize the CpxR regulon in Vibrio cholerae, the transcriptional profile of the pandemic V. cholerae El Tor C6706 strain was examined upon overexpression of cpxR. Our data show that the Cpx regulon of V. cholerae is enriched in genes encoding membrane-localized and transport proteins, including a large number of genes known or predicted to be iron regulated. Activation of the Cpx pathway further led to the expression of TolC, the major outer membrane pore, and of components of two RND efflux systems in V. cholerae. We show that iron chelation, toxic compounds, or deletion of specific RND efflux components leads to Cpx pathway activation. Furthermore, mutations that eliminate the Cpx response or members of its regulon result in growth phenotypes in the presence of these inducers that, together with Cpx pathway activation, are partially suppressed by iron. Cumulatively, our results suggest that a major function of the Cpx response in V. cholerae is to mediate adaptation to envelope perturbations caused by toxic compounds and the depletion of iron.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Vibrio cholerae/genética
11.
J Bacteriol ; 197(3): 603-14, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25422305

RESUMO

The Cpx envelope stress response mediates a complex adaptation to conditions that cause protein misfolding in the periplasm. A recent microarray study demonstrated that Cpx response activation led to changes in the expression of genes known, or predicted, to be involved in cell wall remodeling. We sought to characterize the changes that the cell wall undergoes during activation of the Cpx pathway in Escherichia coli. Luminescent reporters of gene expression confirmed that LdtD, a putative l,d-transpeptidase; YgaU, a protein of unknown function; and Slt, a lytic transglycosylase, are upregulated in response to Cpx-inducing conditions. Phosphorylated CpxR binds to the upstream regions of these genes, which contain putative CpxR binding sites, suggesting that regulation is direct. We show that the activation of the Cpx response causes an increase in the abundance of diaminopimelic acid (DAP)-DAP cross-links that involves LdtD and YgaU. Altogether, our data indicate that changes in peptidoglycan structure are part of the Cpx-mediated adaptation to envelope stress and indicate a role for the uncharacterized gene ygaU in regulating cross-linking.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Glicosídeo Hidrolases/metabolismo , Estresse Fisiológico , Parede Celular/química , DNA Bacteriano/metabolismo , Peptidoglicano/análise , Regiões Promotoras Genéticas , Ligação Proteica
12.
Biochim Biophys Acta ; 1843(8): 1529-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24184210

RESUMO

The Cpx envelope stress response (ESR) has been linked to proteins that are integrated into and secreted across the inner membrane for several decades. Initial studies of the cpx locus linked it to alterations in the protein content of both the inner and outer membrane, together with changes in proton motive driven transport and conjugation. Since the mid 1990s, the predominant view of the Cpx envelope stress response has been that it serves to detect and respond to secreted, misfolded proteins in the periplasm. Recent studies in Escherichia coli and other Gram negative organisms highlight a role for the Cpx ESR in specifically responding to perturbations that occur at the inner membrane (IM). It is clear that Cpx adaptation involves a broad suite of changes that encompass many functions in addition to protein folding. Interestingly, recent studies have refocused attention on Cpx-regulated phenotypes that were initially published over 30years ago, including antibiotic resistance and transport across the IM. In this review I will focus on the insights and models that have arisen from recent studies and that may help explain some of the originally published Cpx phenotypes. Although the molecular nature of the inducing signal for the Cpx ESR remains enigmatic, recently solved structures of signaling proteins are yielding testable models concerning the molecular mechanisms behind signaling. The identification of connections between the Cpx ESR and other stress responses in the cell reveals a complex web of interactions that involves Cpx-regulated expression of other regulators as well as small proteins and sRNAs. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Periplasma/metabolismo , Proteínas Quinases/metabolismo , Processamento Pós-Transcricional do RNA/genética , Proteínas de Bactérias/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Periplasma/genética , Dobramento de Proteína , Proteínas Quinases/química , Transdução de Sinais/genética
13.
Infect Immun ; 83(6): 2396-408, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25824837

RESUMO

Bacteria possess signal transduction pathways capable of sensing and responding to a wide variety of signals. The Cpx envelope stress response, composed of the sensor histidine kinase CpxA and the response regulator CpxR, senses and mediates adaptation to insults to the bacterial envelope. The Cpx response has been implicated in the regulation of a number of envelope-localized virulence determinants across bacterial species. Here, we show that activation of the Cpx pathway in Vibrio cholerae El Tor strain C6706 leads to a decrease in expression of the major virulence factors in this organism, cholera toxin (CT) and the toxin-coregulated pilus (TCP). Our results indicate that this occurs through the repression of production of the ToxT regulator and an additional upstream transcription factor, TcpP. The effect of the Cpx response on CT and TCP expression is mostly abrogated in a cyclic AMP receptor protein (CRP) mutant, although expression of the crp gene is unaltered. Since TcpP production is controlled by CRP, our data suggest a model whereby the Cpx response affects CRP function, which leads to diminished TcpP, ToxT, CT, and TCP production.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Quinases/metabolismo , Vibrio cholerae/enzimologia , Vibrio cholerae/patogenicidade , Proteínas de Bactérias/genética , Regulação para Baixo , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/fisiologia , Óperon , Regiões Promotoras Genéticas , Proteínas Quinases/genética , Virulência
14.
Mol Microbiol ; 92(4): 681-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24628810

RESUMO

Gram-negative bacteria possess several envelope stress responses that detect and respond to damage to this critical cellular compartment. The σ(E) envelope stress response senses the misfolding of outer membrane proteins (OMPs), while the Cpx two-component system is believed to detect the misfolding of periplasmic and inner membrane proteins. Recent studies in several Gram-negative organisms found that deletion of hfq, encoding a small RNA chaperone protein, activates the σ(E) envelope stress response. In this study, we assessed the effects of deleting hfq upon activity of the σ(E) and Cpx responses in non-pathogenic and enteropathogenic (EPEC) strains of Escherichia coli. We found that the σ(E) response was activated in Δhfq mutants of all E. coli strains tested, resulting from the misregulation of OMPs. The Cpx response was activated by loss of hfq in EPEC, but not in E. coli K-12. Cpx pathway activation resulted in part from overexpression of the bundle-forming pilus (BFP) in EPEC Δhfq. We found that Hfq repressed expression of the BFP via PerA, a master regulator of virulence in EPEC. This study shows that Hfq has a more extensive role in regulating the expression of envelope proteins and horizontally acquired virulence genes in E. coli than previously recognized.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , Proteínas Quinases/metabolismo , Fator sigma/metabolismo , Estresse Fisiológico , Análise Mutacional de DNA , Escherichia coli Enteropatogênica/fisiologia , Proteínas de Escherichia coli/genética , Deleção de Genes , Fator Proteico 1 do Hospedeiro/genética
15.
J Bacteriol ; 196(24): 4229-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25246476

RESUMO

The Escherichia coli genome encodes approximately 30 two-component systems that are required for sensing and responding to a variety of environmental and physiological cues. Recent studies have revealed numerous regulatory connections between two-component systems and small noncoding RNAs (sRNAs), which posttranscriptionally regulate gene expression by base pairing with target mRNAs. In this study, we investigated the role of sRNAs in the CpxAR two-component system, which detects and mediates an adaptive response to potentially lethal protein misfolding in the Gram-negative bacterial envelope. Here, we showed for the first time that sRNAs are members of the Cpx regulon. We found that CpxR binds to the promoter regions and regulates expression of two sRNA genes, cyaR and rprA. We also investigated the roles that these sRNAs play in the Cpx response. Cpx repression of cyaR expression creates a feed-forward loop, in which CpxAR increases expression of the inner membrane protein YqaE both directly at the transcriptional level and indirectly at the translational level. Moreover, we found that RprA exerts negative feedback on the Cpx response, reducing Cpx activity in a manner that is dependent on the response regulator CpxR but independent of all of RprA's previously described targets. sRNAs therefore permit the fine-tuning of Cpx pathway activity and its regulation of target genes, which could assist bacterial survival in the face of envelope stress.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/metabolismo , Pequeno RNA não Traduzido/metabolismo , Estresse Fisiológico , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Proteínas Quinases/genética , Pequeno RNA não Traduzido/genética , Transdução de Sinais
16.
Microbiol Resour Announc ; 13(4): e0121623, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38483452

RESUMO

Here, we report the complete genome sequence of Escherichia coli strain MP1, consisting of one circular chromosome and one circular plasmid. Long-read assembly was performed using a consensus approach, followed by long- and short-read polishing, and gene annotation.

17.
J Bacteriol ; 195(12): 2755-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23564175

RESUMO

The Cpx envelope stress response mediates adaptation to stresses that cause envelope protein misfolding. Adaptation is partly conferred through increased expression of protein folding and degradation factors. The Cpx response also plays a conserved role in the regulation of virulence determinant expression and impacts antibiotic resistance. We sought to identify adaptive mechanisms that may be involved in these important functions by characterizing changes in the transcriptome of two different Escherichia coli strains when the Cpx response is induced. We show that, while there is considerable strain- and condition-specific variability in the Cpx response, the regulon is enriched for proteins and functions that are inner membrane associated under all conditions. Genes that were changed by Cpx pathway induction under all conditions were involved in a number of cellular functions and included several intergenic regions, suggesting that posttranscriptional regulation is important during Cpx-mediated adaptation. Some Cpx-regulated genes are centrally involved in energetics and play a role in antibiotic resistance. We show that a number of small, uncharacterized envelope proteins are Cpx regulated and at least two of these affect phenotypes associated with membrane integrity. Altogether, our work suggests new mechanisms of Cpx-mediated envelope stress adaptation and antibiotic resistance.


Assuntos
Membrana Celular/fisiologia , Farmacorresistência Bacteriana , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Estresse Fisiológico , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transcriptoma
18.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119387, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336206

RESUMO

Millions of deaths a year across the globe are linked to antimicrobial resistant infections. The need to develop new treatments and repurpose of existing antibiotics grows more pressing as the growing antimicrobial resistance pandemic advances. In this review article, we propose that envelope stress responses, the signaling pathways bacteria use to recognize and adapt to damage to the most vulnerable outer compartments of the microbial cell, are attractive targets. Envelope stress responses (ESRs) support colonization and infection by responding to a plethora of toxic envelope stresses encountered throughout the body; they have been co-opted into virulence networks where they work like global positioning systems to coordinate adhesion, invasion, microbial warfare, and biofilm formation. We highlight progress in the development of therapeutic strategies that target ESR signaling proteins and adaptive networks and posit that further characterization of the molecular mechanisms governing these essential niche adaptation machineries will be important for sparking new therapeutic approaches aimed at short-circuiting bacterial adaptation.


Assuntos
Bactérias , Bactérias/genética , Virulência
19.
J Bacteriol ; 194(7): 1646-58, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22247509

RESUMO

Type IV pili (T4P) are filamentous surface appendages required for tissue adherence, motility, aggregation, and transformation in a wide array of bacteria and archaea. The bundle-forming pilus (BFP) of enteropathogenic Escherichia coli (EPEC) is a prototypical T4P and confirmed virulence factor. T4P fibers are assembled by a complex biogenesis machine that extrudes pili through an outer membrane (OM) pore formed by the secretin protein. Secretins constitute a superfamily of proteins that assemble into multimers and support the transport of macromolecules by four evolutionarily ancient secretion systems: T4P, type II secretion, type III secretion, and phage assembly. Here, we determine that the lipoprotein transport pathway is not required for targeting the BfpB secretin protein of the EPEC T4P to the OM and describe the ultrastructure of the single particle averaged structures of the assembled complex by transmission electron microscopy. Furthermore, we use photoactivated localization microscopy to determine the distribution of single BfpB molecules fused to photoactivated mCherry. In contrast to findings in other T4P systems, we found that BFP components predominantly have an uneven distribution through the cell envelope and are only found at one or both poles in a minority of cells. In addition, we report that concurrent mutation of both the T4bP secretin and the retraction ATPase can result in viable cells and found that these cells display paradoxically low levels of cell envelope stress response activity. These results imply that secretins can direct their own targeting, have complex distributions and provide feedback information on the state of pilus biogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Lipoproteínas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/ultraestrutura , Proteínas de Escherichia coli/genética , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/ultraestrutura , Lipoproteínas/genética , Transporte Proteico
20.
Infect Immun ; 80(5): 1766-72, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22331433

RESUMO

The Cpx envelope stress response facilitates adaptation to envelope stresses that lead to the misfolding of periplasmic proteins. Cpx-mediated adaptation involves elevated expression of periplasmic proteases and chaperones. Previously, we demonstrated that induction of the Cpx envelope stress response in enteropathogenic Escherichia coli (EPEC) also results in inhibition of type III secretion (T3S) and that this is correlated with downregulated transcription of the relevant genes. Here, we investigated whether the Cpx stress response might also exert posttranscriptional effects on the T3S apparatus. We show that DsbA is required for T3S, while removal of transcription factor CpxR or the Cpx-regulated folding factor CpxP or PpiA has minimal effects. Conversely, the entire T3S complex is removed from the envelope when the Cpx response is activated. Overexpression of the chaperone/protease DegP mimics the Cpx-dependent inhibition of the T3S complex at a posttranscriptional level, and mutation of degP partly abrogates the ability of the Cpx response to inhibit the T3S complex and motility. We present data that suggest that both the protease and chaperone activities of DegP are likely important for the impact on T3S. Altogether, our data indicate that DegP is normally a part of the Cpx-mediated inhibition of virulence determinant expression in EPEC and that additional factors are involved.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/metabolismo , Proteínas de Bactérias/genética , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Luminescência , Proteínas de Membrana/genética , Movimento , Mutação , Proteínas Periplásmicas/genética , Dobramento de Proteína , Proteólise , Serina Endopeptidases/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA