Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(4): 1925-1940, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31828326

RESUMO

DNA single-strand breaks (SSBs) represent the most abundant type of DNA damage. Unrepaired SSBs impair DNA replication and transcription, leading to cancer and neurodegenerative disorders. Although PARP1 and XRCC1 are implicated in the SSB repair pathway, it remains unclear how SSB repair and SSB signaling pathways are coordinated and regulated. Using Xenopus egg extract and in vitro reconstitution systems, here we show that SSBs are first sensed by APE1 to initiate 3'-5' SSB end resection, followed by APE2 recruitment to continue SSB end resection. Notably, APE1's exonuclease activity is critical for SSB repair and SSB signaling pathways. An APE1 exonuclease-deficient mutant identified in somatic tissue from a cancer patient highlighted the significance of APE1 exonuclease activity in cancer etiology. In addition, APE1 interacts with APE2 and PCNA, although PCNA is dispensable for APE1's exonuclease activity. Taken together, we propose a two-step APE1/APE2-mediated mechanism for SSB end resection that couples DNA damage response with SSB repair in a eukaryotic system.


Assuntos
Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endonucleases/genética , Enzimas Multifuncionais/genética , Proteínas de Xenopus/genética , Animais , Quebras de DNA de Cadeia Simples , Dano ao DNA/genética , Replicação do DNA/genética , Humanos , Transdução de Sinais/genética , Xenopus/genética , Xenopus/crescimento & desenvolvimento
2.
Nucleic Acids Res ; 46(5): 2479-2494, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29361157

RESUMO

As the most common type of DNA damage, DNA single-strand breaks (SSBs) are primarily repaired by the SSB repair mechanism. If not repaired properly or promptly, unrepaired SSBs lead to genome stability and have been implicated in cancer and neurodegenerative diseases. However, it remains unknown how unrepaired SSBs are recognized by DNA damage response (DDR) pathway, largely because of the lack of a feasible experimental system. Here, we demonstrate evidence showing that an ATR-dependent checkpoint signaling is activated by a defined plasmid-based site-specific SSB structure in Xenopus HSS (high-speed supernatant) system. Notably, the distinct SSB signaling requires APE2 and canonical checkpoint proteins, including ATR, ATRIP, TopBP1, Rad9 and Claspin. Importantly, the SSB-induced ATR DDR is essential for SSB repair. We and others show that APE2 interacts with PCNA via its PIP box and preferentially interacts with ssDNA via its C-terminus Zf-GRF domain, a conserved motif found in >100 proteins involved in DNA/RNA metabolism. Here, we identify a novel mode of APE2-PCNA interaction via APE2 Zf-GRF and PCNA C-terminus. Mechanistically, the APE2 Zf-GRF-PCNA interaction facilitates 3'-5' SSB end resection, checkpoint protein complex assembly, and SSB-induced DDR pathway. Together, we propose that APE2 promotes ATR-Chk1 DDR pathway from a single-strand break.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Endonucleases , Humanos , Enzimas Multifuncionais , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transdução de Sinais , Proteínas de Xenopus/química , Xenopus laevis
3.
Nat Cancer ; 4(9): 1258-1272, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537301

RESUMO

The accepted paradigm for both cellular and anti-tumor immunity relies upon tumor cell killing by CD8+ T cells recognizing cognate antigens presented in the context of target cell major histocompatibility complex (MHC) class I (MHC-I) molecules. Likewise, a classically described mechanism of tumor immune escape is tumor MHC-I downregulation. Here, we report that CD8+ T cells maintain the capacity to kill tumor cells that are entirely devoid of MHC-I expression. This capacity proves to be dependent instead on interactions between T cell natural killer group 2D (NKG2D) and tumor NKG2D ligands (NKG2DLs), the latter of which are highly expressed on MHC-loss variants. Necessarily, tumor cell killing in these instances is antigen independent, although prior T cell antigen-specific activation is required and can be furnished by myeloid cells or even neighboring MHC-replete tumor cells. In this manner, adaptive priming can beget innate killing. These mechanisms are active in vivo in mice as well as in vitro in human tumor systems and are obviated by NKG2D knockout or blockade. These studies challenge the long-advanced notion that downregulation of MHC-I is a viable means of tumor immune escape and instead identify the NKG2D-NKG2DL axis as a therapeutic target for enhancing T cell-dependent anti-tumor immunity against MHC-loss variants.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Humanos , Camundongos , Antígenos/metabolismo , Linfócitos T CD8-Positivos/patologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo
4.
Radiat Res ; 187(6): 701-707, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28414573

RESUMO

Phosphatidylserine (PS) is asymmetrically distributed across the plasma membrane, located predominantly on the inner leaflet in healthy cells. Translocation of PS to the outer leaflet makes it available as a target for biological therapies. We examined PS translocation after radiosurgery in an animal model of brain arteriovenous malformation (AVM). An arteriovenous fistula was created by end-to-side anastomosis of the left external jugular vein to the common carotid artery in 6-week-old, male Sprague Dawley rats. Six weeks after AVM creation, 15 rats underwent Gamma Knife stereotactic radiosurgery receiving a single 15 Gy dose to the margin of the fistula; 15 rats received sham treatment. Externalization of PS was examined by intravenous injection of a PS-specific near-infrared probe, PSVue-794, and in vivo fluorescence optical imaging at 1, 7, 21, 42, 63 and 84 days postirradiation. Fluorescent signaling indicative of PS translocation to the luminal cell surface accumulated in the AVM region, in both irradiated and nonirradiated animals, at all time points. Fluorescence was localized specifically to the AVM region and was not present in any other anatomical sites. Translocated PS increased over time in irradiated rats (P < 0.001) but not in sham-irradiated rats and this difference reached statistical significance at day 84 (P < 0.05). In summary, vessels within the mature rat AVM demonstrate elevated PS externalization compared to normal vessels. A single dose of ionizing radiation can increase PS externalization in a time-dependent manner. Strict localization of PS externalization within the AVM region suggests that stereotactic radiosurgery can serve as an effective priming agent and PS may be a suitable candidate for vascular-targeting approaches to AVM treatment.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Malformações Arteriovenosas Intracranianas/metabolismo , Malformações Arteriovenosas Intracranianas/radioterapia , Fosfatidilserinas/metabolismo , Radiocirurgia/métodos , Animais , Transporte Biológico Ativo/efeitos da radiação , Membrana Celular/patologia , Relação Dose-Resposta à Radiação , Malformações Arteriovenosas Intracranianas/patologia , Masculino , Proteínas de Membrana/metabolismo , Dosagem Radioterapêutica , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
5.
Radiat Res ; 187(1): 66-78, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28054837

RESUMO

Stereotactic radiosurgery (SRS) is an established treatment for brain arteriovenous malformations (AVMs) that drives blood vessel closure through cellular proliferation, thrombosis and fibrosis, but is limited by a delay to occlusion of 2-3 years and a maximum treatable size of 3 cm. In this current study we used SRS as a priming tool to elicit novel protein expression on the endothelium of irradiated AVM vessels, and these proteins were then targeted with prothrombotic conjugates to induce rapid thrombosis and vessel closure. SRS-induced protein changes on the endothelium in an animal model of AVM were examined using in vivo biotin labeling of surface-accessible proteins and comparative proteomics. LC-MS/MS using SWATH acquisition label-free mass spectrometry identified 280 proteins in biotin-enriched fractions. The abundance of 56 proteins increased after irradiation of the rat arteriovenous fistula (20 Gy, ≥1.5-fold). A large proportion of intracellular proteins were present in this subset: 29 mitochondrial and 9 cytoskeletal. Three of these proteins were chosen for further validation based on previously published evidence for surface localization and a role in autoimmune stimulation: cardiac troponin I (TNNI3); manganese superoxide dismutase (SOD2); and the E2 subunit of the pyruvate dehydrogenase complex (PDCE2). Immunostaining of AVM vessels confirmed an increase in abundance of PDCE2 across the vessel wall, but not a measurable increase in TNNI3 or SOD2. All three proteins co-localized with the endothelium after irradiation, however, more detailed subcellular distribution could not be accurately established. In vitro, radiation-stimulated surface translocation of all three proteins was confirmed in nonpermeabilized brain endothelial cells using immunocytochemistry. Total protein abundance increased modestly after irradiation for PDCE2 and SOD2 but decreased for TNNI3, suggesting that radiation primarily affects subcellular distribution rather than protein levels. The novel identification of these proteins as surface exposed in response to radiation raises important questions about their potential role in radiation-induced inflammation, fibrosis and autoimmunity, but may also provide unique candidates for vascular targeting in brain AVMs and other vascular tissues.


Assuntos
Malformações Arteriovenosas/metabolismo , Malformações Arteriovenosas/radioterapia , Encéfalo/patologia , Células Endoteliais/efeitos da radiação , Espaço Intracelular/efeitos da radiação , Proteoma/metabolismo , Radiocirurgia , Animais , Malformações Arteriovenosas/patologia , Encéfalo/efeitos da radiação , Linhagem Celular , Células Endoteliais/metabolismo , Espaço Intracelular/metabolismo , Masculino , Transporte Proteico/efeitos da radiação , Ratos , Ratos Sprague-Dawley
6.
Vet Sci ; 2(2): 97-110, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29061934

RESUMO

Arteriovenous malformations (AVMs) are congenital lesions that cause brain haemorrhage in children and young adults. Current treatment modalities include surgery, radiosurgery and embolization. These treatments are generally effective only for small AVMs. Over one third of AVMs cannot be treated safely and effectively with existing options. Several animal models have been developed with the aims of understanding AVM pathophysiology and improving treatment. No animal model perfectly mimics a human AVM. Each model has limitations and advantages. Models contribute to the understanding of AVMs and hopefully to the development of improved therapies. This paper reviews animal models of AVMs and their advantages and disadvantages.

7.
J Neurosurg ; 123(4): 954-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25884263

RESUMO

OBJECT: Brain arteriovenous malformations (AVMs) are a major cause of stroke. Many AVMs are effectively obliterated by stereotactic radiosurgery, but such treatment for lesions larger than 3 cm is not as effective. Understanding the responses to radiosurgery may lead to new biological enhancements to this treatment modality. The aim of the present study was to investigate the hemodynamic, morphological, and histological effects of Gamma Knife surgery (GKS) in an animal model of brain AVM. METHODS: An arteriovenous fistula was created by anastomosing the left external jugular vein to the side of the common carotid artery in 64 male Sprague-Dawley rats (weight 345 ± 8.8 g). Six weeks after AVM creation, 32 rats were treated with a single dose of GKS (20 Gy); 32 animals received sham radiation. Eight irradiated and 8 control animals were studied at each specified time point (1, 3, 6, and 12 weeks) for hemodynamic, morphological, and histological characterization. RESULTS: Two AVMs showed partial angiographic obliteration at 6 weeks. Angiography revealed complete obliteration in 3 irradiated rats at 12 weeks. Blood flow in the ipsilateral proximal carotid artery (p < 0.001) and arterialized jugular vein (p < 0.05) was significantly lower in the irradiated group than in the control group. The arterialized vein's external diameter was significantly smaller in GKS-treated animals at 6 (p < 0.05) and 12 (p < 0.001) weeks. Histological changes included subendothelial cellular proliferation and luminal narrowing in GKS-treated animals. Neither luminal obliteration nor thrombus formation was identified at any of the time points in either irradiated or nonirradiated animals. CONCLUSIONS: GKS produced morphological, angiographic, and histological changes in the model of AVM as early as 6 weeks after treatment. These results support the use of this model for studying methods to enhance radiation response in AVMs.


Assuntos
Malformações Arteriovenosas Intracranianas/cirurgia , Radiocirurgia , Angiografia , Animais , Modelos Animais de Doenças , Hemodinâmica , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/patologia , Malformações Arteriovenosas Intracranianas/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA