Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 85(4): 1053-1064, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35228353

RESUMO

Polyacrylonitrile (PAN) adsorptive membrane incorporated with nanosize-goethite (α-FeO(OH)) hydrous metal oxide particles (GNPs), prepared with optimal flux and Cu(II) removal in the previous study, was used to evaluate the process parameter on the Cu(II) removal. Box-Behnken Design (BBD) based on the Response Surface Methodology (RSM) was employed to evaluate the impact of Cu(II) feed solution characteristics such as pH, initial concentration of metal ion, and transmembrane pressure (TMP) on copper removal efficiency. The outcomes indicated that the RSM optimization technique could be utilized as an applicable method to find the optimum condition for the maximum Cu(II) removal with slight variance compared with the experimentally measured data. The effect of each process parameter and the coupling effect of parameters on the Cu(II) removal was assessed. Finally, the optimum condition of pH, Cu(II) concentration, and transmembrane pressure (TMP) to obtain high copper removal efficiency was decided. In the optimum condition of the Cu(II) removal, the removal of lead (Pb(II)) metal ion was evaluated by the same membrane.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Cobre , Concentração de Íons de Hidrogênio , Íons , Compostos de Ferro , Chumbo , Minerais , Ultrafiltração , Água , Poluentes Químicos da Água/análise
2.
Chemosphere ; 350: 140999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151066

RESUMO

In this study, machine learning-based models were established for layer-by-layer (LBL) nanofiltration (NF) membrane performance prediction and polymer candidate exploration. Four different models, i.e., linear, random forest (RF), boosted tree (BT), and eXtreme Gradient Boosting (XGBoost), were formed, and membrane performance prediction was determined in terms of membrane permeability and selectivity. The XGBoost exhibited optimal prediction accuracy for membrane permeability (coefficient of determination (R2): 0.99) and membrane selectivity (R2: 0.80). The Shapley Additive exPlanation (SHAP) method was utilized to evaluate the effects of different LBL NF membrane fabrication conditions on membrane performances. The SHAP method was also used to identify the relationships between polymer structure and membrane performance. Polymers were represented by Morgan fingerprint, which is an effective description approach for developing modeling. Based on the SHAP value results, two reference Morgan fingerprints were constructed containing atomic groups with positive contributions to membrane permeability and selectivity. According to the reference Morgan fingerprint, 204 potential polymers were explored from the largest polymer database (PoLyInfo). By calculating the similarities between each potential polymer and both reference Morgan fingerprints, 23 polymer candidates were selected and could be further used for LBL NF membrane fabrication with the potential for providing good membrane performance. Overall, this work provided new ways both for LBL NF membrane performance prediction and high-performance polymer candidate exploration. The source code for the models and algorithms used in this study is publicly available to facilitate replication and further research. https://github.com/wangliwfsd/LLNMPP/.


Assuntos
Algoritmos , Aprendizado de Máquina , Membranas , Bases de Dados Factuais , Polímeros
3.
Membranes (Basel) ; 12(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36557106

RESUMO

For the first time, we have successfully fabricated microfiltration (MF) hollow fiber membranes by the thermally induced phase separation (TIPS) and non-solvent induced phase separation (NIPS) methods using cellulose acetate benzoate (CBzOH), which is a cellulose derivative with considerable chemical resistance. To obtain an appropriate CBzOH TIPS membrane, a comprehensive solvent screening was performed to choose the appropriate solvent to obtain a membrane with a porous structure. In parallel, the CBzOH membrane was prepared by the NIPS method to compare and evaluate the effect of membrane structure using the same polymer material. Prepared CBzOH membrane by TIPS method showed high porosity, pore size around 100 nm or larger and high pure water permeability (PWP) with slightly low rection performance compared to that by NIPS. On the contrary, CBzOH membranes prepared with the NIPS method showed three times lower PWP with higher rejection. The chemical resistance of the prepared CBzOH membranes was compared with that of cellulose triacetate (CTA) hollow fiber membrane, which is a typical cellulose derivative as a control membrane, using a 2000 ppm sodium hypochlorite (NaClO) solution. CBzOH membranes prepared with TIPS and NIPS methods showed considerable resistance against the NaClO solution regardless of the membrane structure, porosity and pore size. On the other hand, when the CTA membrane, as the control membrane, was subjected to the NaClO solution, membrane mechanical strength sharply decreased over the exposure time to NaClO. It is interesting that although the CBzOH TIPS membrane showed three times higher pure water permeability than other membranes with slightly lower rejection and considerably higher NaClO resistance, the mechanical strength of this membrane is more than two times higher than other membranes. While CBzOH samples showed no change in chemical structure and contact angle, CTA showed considerable change in chemical structure and a sharp decrease in contact angle after treatment with NaClO. Thus, CBzOH TIPS hollow fiber membrane is noticeably interesting considering membrane performance in terms of filtration performance, mechanical strength and chemical resistance on the cost of slightly losing rejection performance.

4.
ACS Omega ; 7(38): 33783-33792, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188311

RESUMO

For the first time, self-standing microfiltration (MF) hollow fiber membranes were prepared from cellulose triacetate (CTA) via the thermally induced phase separation (TIPS) method. The resultant membranes were compared with counterparts prepared from cellulose diacetate (CDA) and cellulose acetate propionate (CAP). Extensive solvent screening by considering the Hansen solubility parameters of the polymer and solvent, the polymer's solubility at high temperature, solidification of the polymer solution at low temperature, viscosity, and processability of the polymeric solution, is the most challenging issue for cellulose membrane preparation. Different phase separation mechanisms were identified for CTA, CDA, and CAP polymer solutions prepared using the screened solvents for membrane preparation. CTA solutions in binary organic solvents possessed the appropriate properties for membrane preparation via liquid-liquid phase separation, followed by a solid-liquid phase separation (polymer crystallization) mechanism. For the prepared CTA hollow fiber membranes, the maximum stress was 3-5 times higher than those of the CDA and CAP membranes. The temperature gap between the cloud point and crystallization onset in the polymer solution plays a crucial role in membrane formation. All of the CTA, CDA, and CAP membranes had a very porous bulk structure with a pore size of ∼100 nm or larger, as well as pores several hundred nanometers in size at the inner surface. Using an air gap distance of 0 mm, the appropriate organic solvents mixed in an optimized ratio, and a solvent for cellulose derivatives as the quench bath media, it was possible to obtain a CTA MF hollow fiber membrane with high pure water permeance and notably high rejection of 100 nm silica nanoparticles. It is expected that these membranes can play a great role in pharmaceutical separation.

5.
Polymers (Basel) ; 14(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35567077

RESUMO

Membrane-based processes are a promising technology in water and wastewater treatments, to supply clean and secure water. However, during membrane filtration, biofouling phenomena severely hamper the performance, leading to permanent detrimental impacts. Moreover, regular chemical cleaning is ineffective in the long-run for overcoming biofouling, because it weakens the membrane structure. Therefore, the development of a membrane material with superior anti-biofouling performance is seen as an attractive option. Hydrophilic-anti-bacterial precursor polyethylene glycol-silver nanoparticles (PEG-AgNPs) were synthesized in this study, using a sol-gel method, to mitigate biofouling on the polyethersulfone (PES) membrane surface. The functionalization of the PEG-AgNP hybrid material on a PES membrane was achieved through a simple blending technique. The PES/PEG-AgNP membrane was manufactured via the non-solvent induced phase separation method. The anti-biofouling performance was experimentally measured as the flux recovery ratio (FRR) of the prepared membrane, before and after incubation in E. coli culture for 48 h. Nanomaterial characterization confirmed that the PEG-AgNPs had hydrophilic-anti-bacterial properties. The substantial improvements in membrane performance after adding PEG-AgNPs were evaluated in terms of the water flux and FRR after the membranes experienced biofouling. The results showed that the PEG-AgNPs significantly increased the water flux of the PES membrane, from 2.87 L·m-2·h-1 to 172.84 L·m-2·h-1. The anti-biofouling performance of the PES pristine membrane used as a benchmark showed only 1% FRR, due to severe biofouling. In contrast, the incorporation of PEG-AgNPs in the PES membrane decreased live bacteria by 98%. It enhanced the FRR of anti-biofouling up to 79%, higher than the PES/PEG and PES/Ag membranes.

6.
Polymers (Basel) ; 13(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771192

RESUMO

α-Lactalbumin is an essential protein with multiple roles in physiological and the nutritional functionalities, such as diabetic prevention, blood pressure stabilization, and cancer cell inhibition. In the present work, polyethersulfone (PES)-based membranes were developed by incorporating Pluronic F127 and carbon nanotubes with single- and multi-walled dimensions (Sw-Cnts and Mw-Cnts) as additives. The resulting membranes were evaluated for use in the filtration of α-lactalbumin protein solution. Four series of membranes, including PES pristine membrane, were fabricated via the phase inversion process. The characteristics of the membrane samples were analyzed in terms of morphology, membrane surface hydrophilicity and roughness, and surface chemistry. The characterization results show that the incorporation of additive increased the surface wettability by reducing the surface water contact angle from 80.4° to 64.1° by adding F127 and Mw-Cnt additives. The highest pure water permeability of 135 L/(m2·h·bar) was also exhibited by the PES/F127/Mw-Cnt membrane. The performance of the modified membranes was clearly better than the pristine PSF for α-lactalbumin solution filtration. The permeability of α-lactalbumin solution increased from 9.0 L/(m2·h·bar) for the pristine PES membrane to 10.5, 11.0 and 11.5 L/(m2·h·bar) for membranes loaded with Pluronic F127, Sw-Cnts, and Mw-Cnts, respectively. Those increments corresponded to 17, 22, and 28%. Such increments could be achieved without altering the α-lactalbumin rejections of 80%. Remarkably, the rejection for the membrane loaded with Sw-Cnts even increased to 89%.

7.
Membranes (Basel) ; 10(1)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963230

RESUMO

In this work, a novel triple-layer nanocomposite membrane prepared with polyethersulfone (PES)/carbon nanotubes (CNTs) as the primary bulk material and poly (vinylidene fluoride-co-hexafluoro propylene) (PcH)/CNTs as the outer and inner surfaces of the membrane by using electrospinning method is introduced. Modified PES with CNTs was chosen as the bulk material of the triple-layer membrane to obtain a high porosity membrane. Both the upper and lower surfaces of the triple-layer membrane were coated with PcH/CNTs using electrospinning to get a triple-layer membrane with high total porosity and noticeable surface hydrophobicity. Combining both characteristics, next to an acceptable bulk hydrophobicity, resulted in a compelling membrane for membrane distillation (MD) applications. The prepared membrane was utilized in a direct contact MD system, and its performance was evaluated in different salt solution concentrations, feed velocities and feed solution temperatures. The results of the prepared membrane in this study were compared to those reported in previously published papers. Based on the evaluated membrane performance, the triple-layer nanocomposite membrane can be considered as a potential alternative with reasonable cost, relative to other MD membranes.

8.
Mater Sci Eng C Mater Biol Appl ; 77: 662-671, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532077

RESUMO

Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment.


Assuntos
Ultrafiltração , Membranas Artificiais , Polímeros , Esgotos , Cloreto de Vinil
9.
Mater Sci Eng C Mater Biol Appl ; 75: 79-87, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415530

RESUMO

To inhibit fouling phenomenon in membrane process, a new amphiphilic copolymer, poly(tetrafluoroethylene-co-vinylpyrrolidone) (P(TFE-VP)), was blended with poly(vinylidene difluoride) (PVDF) to fabricate a series of antifouling membranes via non solvent induced phase separation (NIPS) method. The effect of copolymer blend ratios and TFE/VP ratios on membrane properties were evaluated, and the stability of P(TFE-VP) in PVDF membrane was studied. The membrane morphology was controlled by adjusting polymer concentration in dope solution, such that all membranes have similar pore size and density, as well as pure water permeability. In evaluating the effect of TFE/VP ratios, the content of VP in dope solutions was also adjusted to allow a fair comparison. We found that for P(TFE-VP) with a higher VP content, adsorption of BSA on polymer film was negligible. Higher blend ratios of this copolymer resulted in higher surface VP content and better hydrophilicity, but antifouling performance ceased to improve when blend ratio was larger than 1:9 (copolymer:PVDF). Meanwhile, a lower VP content in copolymer resulted in inferior hydrophilicity and severe fouling of the blend membranes. It was also proved that comparing with PVP homopolymer, P(TFE-VP) had satisfying stability inside PVDF membrane.


Assuntos
Membranas Artificiais , Polivinil/química
10.
Membranes (Basel) ; 4(1): 113-22, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24957124

RESUMO

The solidification behavior of poly(vinylidene fluoride) (PVDF) solution during membrane preparation by thermally induced phase separation (TIPS) was investigated. Apparatus newly developed in our laboratory was used to quantitatively measure membrane stiffness during phase separation. In this apparatus, a cooling polymer solution, placed on a stage, is moved upwards and the surface of the polymer solution contacts a sphere attached to the tip of a needle. The displacement of a blade spring attached to the needle is then measured by a laser displacement sensor. Different phase separation modes, such as liquid-liquid (L-L) phase separation and solid-liquid (S-L) phase separation (polymer crystallization) were investigated. In the case of S-L phase separation, the stiffness of the solution surface began to increase significantly just before termination of crystallization. In contrast, L-L phase separation delayed solidification of the solution. This was because mutual contact of the spherulites was obstructed by droplets of polymer-lean phase formed during L-L phase separation. Thus, the solidification rate was slower for the L-L phase separation system than for the S-L phase separation system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA