Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Semin Cancer Biol ; 86(Pt 3): 1105-1121, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34979274

RESUMO

Chemokines are small secretory chemotactic cytokines that control the directed migration of immune cells. Chemokines are involved in both anti-and pro-tumorigenic immune responses. Accumulating evidence suggests that the balance between these responses is influenced by several factors such as the stage of tumorigenesis, immune cell activation, recruitment of immune activating or immunosuppressive cells in the tumor microenvironment (TME), and chemokine receptor expression on effector and regulatory target cells. Cancer cells engage in a complex network with their TME components via several factors including growth factors, cytokines and chemokines that are critical for the growth of primary tumor and metastasis. However, chemokines show a multifaceted role in tumor progression including maintenance of stem-like properties, tumor cell proliferation/survival/senescence, angiogenesis, and metastasis. The heterogeneity of solid tumors in primary and metastatic cancers presents a challenge to the development of successful cancer therapy. Despite extensive research on how solid tumors escape immune cell-mediated anti-tumor response, finding an effective therapy for metastatic cancer still remains a challenge. This review discusses the multifarious roles of chemokines in solid tumors including various chemokine signaling pathways such as CXCL8-CXCR1/2, CXCL9, 10, 11-CXCR3, CXCR4-CXCL12, CCL(X)-CCR(X) in primary and metastatic cancers. We further discuss the novel therapeutic approaches that have been developed by major breakthroughs in chemokine research to treat cancer patients by the strategic blockade/activation of these signaling axes alone or in combination with immunotherapies.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Microambiente Tumoral , Neovascularização Patológica , Imunoterapia , Biologia
2.
J Biol Chem ; 296: 100714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930463

RESUMO

Overconsumption of sucrose and other sugars has been associated with nonalcoholic fatty liver disease (NAFLD). Reports suggest hepatic de novo lipogenesis (DNL) as an important contributor to and regulator of carbohydrate-induced hepatic lipid accumulation in NAFLD. The mechanisms responsible for the increase in hepatic DNL due to overconsumption of carbohydrate diet are less than clear; however, literatures suggest high carbohydrate diet to activate the lipogenic transcription factor carbohydrate response element-binding protein (ChREBP), which further transcribes genes involved in DNL. Here, we provide an evidence of an unknown link between nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and increased DNL. Our data indicates high carbohydrate diet to enforce nuclear shuttling of hepatic NF-κB p65 and repress transcript levels of sorcin, a cytosolic interacting partner of ChREBP. Reduced sorcin levels, further prompted ChREBP nuclear translocation, leading to enhanced DNL and intrahepatic lipid accumulation both in vivo and in vitro. We further report that pharmacological inhibition of NF-κB abrogated high carbohydrate diet-mediated sorcin repression and thereby prevented ChREBP nuclear translocation and this, in turn, attenuated hepatic lipid accumulation both in in vitro and in vivo. Additionally, sorcin knockdown blunted the lipid-lowering ability of the NF-κB inhibitor in vitro. Together, these data suggest a heretofore unknown role for NF-κB in regulating ChREBP nuclear localization and activation, in response to high carbohydrate diet, for further explorations in lines of NAFLD therapeutics.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/efeitos dos fármacos , Carboidratos da Dieta/farmacologia , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Hep G2 , Humanos
3.
Dig Dis Sci ; 67(8): 3497-3507, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383198

RESUMO

The liver is an organ of vital importance in the body; it is the center of metabolic activities and acts as the primary line of defense against toxic compounds. Exposure to environmental toxicants is an unavoidable fallout from rapid industrialization across the world and is even higher in developing countries. Technological development and industrialization have led to the release of toxicants such as pollutant toxic gases, chemical discharge, industrial effluents, pesticides and solvents, into the environment. In the last few years, a growing body of evidence has shed light on the potential impact of environmental toxicants on liver health, in particular, on non-alcoholic fatty liver disease (NAFLD) incidence and progression. NAFLD is a multifactorial disease linked to metabolic derangement including diabetes and other complications. Environmental toxicants including xenobiotics and pollutants may have a direct or indirect steatogenic/fibrogenic impact on the liver and should be considered as risk factors associated with NAFLD. This review discusses the contribution of environmental toxicants toward the increasing disease burden of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Efeitos Psicossociais da Doença , Humanos , Incidência , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Fatores de Risco
4.
Biochem Biophys Res Commun ; 532(4): 570-575, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32900486

RESUMO

Hepatocellular cancer (HCC) is one of the leading causes of mortality worldwide. Unfortunately, a limited choice of anti-cancer drugs is available for treatment, owing to their minimal efficacy and development of acquired resistance. Autophagy, a cellular survival pathway, often exhibits a pleiotropic role in HCC progression. Studies show increased autophagy in established HCC, promoting the survival of HCC cells in the tumour microenvironment. Therefore, novel anti-autophagy drugs hold promise for preventing HCC progression. Here, using a non-biased transcriptomics analysis in HepG2 cells we demonstrate the existence of an autophagy-FOXM1 nexus regulating growth in HepG2 cells. Additionally, we show that suppression of autophagy by an Unc-51 Like Autophagy Activating Kinase 1(ULK1) inhibitor not only attenuates the expression of FOXM1 and its transcriptional targets, but also has a synergistic effect on the inhibition of HepG2 growth when combined with FOXM1 inhibitors. Thus, the autophagic protein, ULK1, is a promising candidate for preventing HCC progression. Collectively, our results provide new insight into the role of autophagy in HCC growth and are a proof-of concept for combinatorial therapy using ULK1 and FOXM1 inhibitors.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Carcinoma Hepatocelular/metabolismo , Proteína Forkhead Box M1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Carcinoma Hepatocelular/genética , Proliferação de Células , Proteína Forkhead Box M1/antagonistas & inibidores , Inativação Gênica , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Hepáticas/genética , Transdução de Sinais/efeitos dos fármacos
5.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244266

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors which belong to the nuclear hormone receptor superfamily. They regulate key aspects of energy metabolism within cells. Recently, PPARα has been implicated in the regulation of autophagy-lysosomal function, which plays a key role in cellular energy metabolism. PPARα transcriptionally upregulates several genes involved in the autophagy-lysosomal degradative pathway that participates in lipolysis of triglycerides within the hepatocytes. Interestingly, a reciprocal regulation of PPARα nuclear action by autophagy-lysosomal activity also exists with implications in lipid metabolism. This review succinctly discusses the unique relationship between PPARα nuclear action and lysosomal activity and explores its impact on hepatic lipid homeostasis under pathological conditions such as non-alcoholic fatty liver disease (NAFLD).


Assuntos
Lipólise/fisiologia , Fígado/metabolismo , Lisossomos/metabolismo , PPAR alfa/metabolismo , Animais , Autofagia/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Humanos , Lisossomos/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Triglicerídeos/metabolismo
6.
Biochem Biophys Res Commun ; 514(2): 415-421, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31053302

RESUMO

Maternal nutrition has become a major public health concern over recent years and is a known predictor of adverse long-term metabolic derangement in offspring. Time-restricted feeding (TRF), wherein food consumption is restricted to the metabolically active phase of the day, is a dietary approach that improves metabolic parameters when consuming a high-fat diet (HFD). Here, we tested whether TRF could reduce maternal HFD associated inflammation and thereby mitigate defects in fetal organ developmental. Female rats were kept on following three dietary regimens; Ad libitum normal chow diet (NCD-AL), Ad libitum HFD (HFD-AL) and Time-restricted fed HFD (HFD-TRF) from 5 months prior to mating and continued throughout pregnancy. Rat dams were sacrificed at embryonic day 18.5 (ED18.5) and placental tissues from these rats were processed for the analysis of cellular apoptosis, inflammatory cytokines (TNFα and IL-6), oxidative stress, endoplasmic reticulum (ER) stress and autophagy. Furthermore, fetal hepatic triglyceride (TG) content and fetal lung maturation were assessed at ED18.5. Biochemical analysis revealed that HFD-TRF rat had significantly lower serum TG levels and body weight compared to HFD-AL rats. Additionally, TRF significantly blocked HFD-induced placental apoptosis and inflammation via minimizing cellular stress, and restoring autophagic flux. In addition, fetal hepatosteatosis and delayed fetal lung maturation induced by HFD was significantly ameliorated in HFD-TRF compared to HFD-AL. Collectively, our results suggest that reducing placental inflammation via TRF could prevent adverse fetal metabolic outcomes in pregnancies complicated by maternal obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Jejum , Feto/efeitos dos fármacos , Feto/embriologia , Inflamação/prevenção & controle , Placenta/efeitos dos fármacos , Placenta/patologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Doenças Metabólicas/prevenção & controle , Obesidade/sangue , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Triglicerídeos/sangue
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422712

RESUMO

Non-alcoholic steatohepatitis (NASH) is a pathogenic stage of the broader non-alcoholic fatty liver disease (NAFLD). Histological presentation of NASH includes hepatocyte ballooning, macrophage polarization, ductular reaction, and hepatic stellate cell (HSCs) activation. At a cellular level, a heterogenous population of cells such as hepatocytes, macrophages, cholangiocytes, and HSCs undergo dramatic intra-cellular changes in response to extracellular triggers, which are termed "cellular plasticity. This dynamic switch in the cellular structure and function of hepatic parenchymal and non-parenchymal cells and their crosstalk culminates in the perpetuation of inflammation and fibrosis in NASH. This review presents an overview of our current understanding of cellular plasticity in NASH and its molecular mechanisms, along with possible targeting to develop cell-specific NASH therapies.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Plasticidade Celular , Hepatócitos/patologia , Células de Kupffer/patologia
8.
NPJ Metab Health Dis ; 2(1): 19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100919

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) originates from a homeostatic imbalance in hepatic lipid metabolism. Increased fat deposition in the liver of people suffering from MASLD predisposes them to develop further metabolic derangements, including diabetes mellitus, metabolic dysfunction-associated steatohepatitis (MASH), and other end-stage liver diseases. Unfortunately, only limited pharmacological therapies exist for MASLD to date. Autophagy, a cellular catabolic process, has emerged as a primary mechanism of lipid metabolism in mammalian hepatocytes. Furthermore, preclinical studies with autophagy modulators have shown promising results in resolving MASLD and mitigating its progress into deleterious liver pathologies. In this review, we discuss our current understanding of autophagy-mediated hepatic lipid metabolism, its therapeutic modulation for MASLD treatment, and current limitations and scope for clinical translation.

9.
Thromb Res ; 238: 117-128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703585

RESUMO

Previous research has identified intravascular platelet thrombi in regions affected by myocardial ischemia-reperfusion (MI/R) injury and neighbouring areas. However, the occurrence of arterial thrombosis in the context of MI/R injury remains unexplored. This study utilizes intravital microscopy to investigate carotid artery thrombosis during MI/R injury in rats, establishing a connection with the presence of prothrombotic cellular fibronectin containing extra domain A (CFN-EDA) protein. Additionally, the study examines samples from patients with coronary artery disease (CAD) both before and after coronary artery bypass grafting (CABG). Levels of CFN-EDA significantly increase following MI with further elevation observed following reperfusion of the ischemic myocardium. Thrombotic events, such as thrombus formation and growth, show a significant increase, while the time to complete cessation of blood flow in the carotid artery significantly decreases following MI/R injury induced by ferric chloride. The acute infusion of purified CFN-EDA protein accelerates in-vivo thrombotic events in healthy rats and significantly enhances in-vitro adenosine diphosphate and collagen-induced platelet aggregation. Treatment with anti-CFN-EDA antibodies protected the rat against MI/R injury and significantly improved cardiac function as evidenced by increased end-systolic pressure-volume relationship slope and preload recruitable stroke work compared to control. Similarly, in a human study, plasma CFN-EDA levels were notably elevated in CAD patients undergoing CABG. Post-surgery, these levels continued to rise over time, alongside cardiac injury biomarkers such as cardiac troponin and B-type natriuretic peptide. The study highlights that increased CFN-EDA due to CAD or MI initiates a destructive positive feedback loop by amplifying arterial thrombus formation, potentially exacerbating MI/R injury.


Assuntos
Fibronectinas , Traumatismo por Reperfusão Miocárdica , Trombose , Animais , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Humanos , Masculino , Trombose/etiologia , Trombose/sangue , Trombose/patologia , Fibronectinas/metabolismo , Ratos Sprague-Dawley , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/sangue , Idoso
10.
World J Hepatol ; 15(12): 1272-1283, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38192406

RESUMO

Autophagy, a cellular degradative process, has emerged as a key regulator of cellular energy production and stress mitigation. Dysregulated autophagy is a common phenomenon observed in several human diseases, and its restoration offers curative advantage. Non-alcoholic fatty liver disease (NAFLD), more recently renamed metabolic dysfunction-associated steatotic liver disease, is a major metabolic liver disease affecting almost 30% of the world population. Unfortunately, NAFLD has no pharmacological therapies available to date. Autophagy regulates several hepatic processes including lipid metabolism, inflammation, cellular integrity and cellular plasticity in both parenchymal (hepatocytes) and non-parenchymal cells (Kupffer cells, hepatic stellate cells and sinusoidal endothelial cells) with a profound impact on NAFLD progression. Understanding cell type-specific autophagy in the liver is essential in order to develop targeted treatments for liver diseases such as NAFLD. Modulating autophagy in specific cell types can have varying effects on liver function and pathology, making it a promising area of research for liver-related disorders. This review aims to summarize our present understanding of cell-type specific effects of autophagy and their implications in developing autophagy centric therapies for NAFLD.

11.
Cells ; 12(14): 1845, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37484201

RESUMO

Non-alcoholic steatohepatitis (NASH) is a clinically serious stage of non-alcoholic fatty liver disease (NAFLD). Histologically characterized by hepatocyte ballooning, immune cell infiltration, and fibrosis, NASH, at a molecular level, involves lipid-induced hepatocyte death and cytokine production. Currently, there are very few diagnostic biomarkers available to screen for NASH, and no pharmacological intervention is available for its treatment. In this study, we show that hepatocyte damage induced by lipotoxicity results in the release of extracellular RNAs (eRNAs), which serve as damage-associated molecular patterns (DAMPs) that stimulate the expression of pro-apoptotic and pro-inflammatory cytokines, aggravate inflammation, and lead to cell death in HepG2 cells. Furthermore, the inhibition of eRNA activity by RNase 1 significantly increases cellular viability and reduces NF-kB-mediated cytokine production. Similarly, RNase 1 administration significantly improves hepatic steatosis, inflammatory and injury markers in a murine NASH model. Therefore, this study, for the first time, underscores the therapeutic potential of inhibiting eRNA action as a novel strategy for NASH treatment.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatócitos/metabolismo , Inflamação/patologia , Citocinas
12.
Biochim Biophys Acta Mol Basis Dis ; 1869(4): 166662, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36754244

RESUMO

Nonalcoholic steatohepatitis (NASH) is considered a pivotal stage in nonalcoholic fatty liver disease (NAFLD) progression and increases the risk of end-stage liver diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The etiology of NASH is multifactorial and identifying reliable molecular players has proven difficult. Presently, there are no approved drugs for NASH treatment, which has become a leading cause of liver transplants worldwide. Here, using public human transcriptomic NAFLD dataset, we uncover Cystic fibrosis transmembrane conductance receptor (CFTR) as a differentially expressed gene in the livers of human NASH patients. Similarly, murine Cftr expression was also found to be upregulated in two mouse models of diet-induced NASH. Furthermore, the pharmacological inhibition of CFTR significantly reduced NASH progression in mice and its overexpression aggravated lipotoxicity in human hepatic cells. These results, thus, underscore the involvement of murine Cftr in the pathogenesis of NASH and raise the intriguing possibility of its pharmacological inhibition in human NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
13.
Front Cell Dev Biol ; 10: 836021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252196

RESUMO

Liver is the primary organ for energy metabolism and detoxification in the human body. Not surprisingly, a derangement in liver function leads to several metabolic diseases. Autophagy is a cellular process, which primarily deals with providing molecules for energy production, and maintains cellular health. Autophagy in the liver has been implicated in several hepatic metabolic processes, such as, lipolysis, glycogenolysis, and gluconeogenesis. Autophagy also provides protection against drugs and pathogens. Deregulation of autophagy is associated with the development of non-alcoholic fatty liver disease (NAFLD) acute-liver injury, and cancer. The process of autophagy is synchronized by the action of autophagy family genes or autophagy (Atg) genes that perform key functions at different steps. The uncoordinated-51-like kinases 1 (ULK1) is a proximal kinase member of the Atg family that plays a crucial role in autophagy. Interestingly, ULK1 actions on hepatic cells may also involve some autophagy-independent signaling. In this review, we provide a comprehensive update of ULK1 mediated hepatic action involving lipotoxicity, acute liver injury, cholesterol synthesis, and hepatocellular carcinoma, including both its autophagic and non-autophagic functions.

14.
Life Sci ; 309: 120964, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36115584

RESUMO

INTRODUCTION AND AIM: Purpurin, a naturally occurring anthraquinone isolated from the roots of Rubia cordifolia, exhibits anti-cancer, anti-genotoxic, anti-microbial, neuromodulatory and photodynamic activity. However, purpurin's in vivo and in vitro antioxidant mechanism remains unexplored. The present study explores the anti-oxidative mechanism of purpurin under the influence of alcohol using in vivo and in vitro test systems. METHODS: Mice hepatocytes and alcohol-induced liver toxicity model were used to evaluate the effect of purpurin. The non-enzymatic and enzymatic oxidative stress markers were estimated by the colorimetric method. The reactive oxygen species (ROS) were quantified in mitochondria and cells using flow cytometer. Real-time PCR and western blotting were used to quantify cytochrome 450 subtype 2E1 (CYP2E1) and Nrf2 expression in the liver tissue of mice. In silico studies were performed through receptor-ligand binding interaction. KEY FINDINGS: Purpurin effectively reduced total cellular and mitochondrial ROS in primary hepatocytes and WRL-68 cells. It prevented alcohol-induced ROS-dependent biochemical and cellular insults observed by analysing the serum glutamic pyruvic transaminase (SGPT), glutamic-oxaloacetic transaminase (SGOT) levels and CYP2E1 expression in liver tissue of alcohol-administered mice. Moreover, it also restored the activity of antioxidant enzymes. Its antioxidant effect was established by glutathione and ROS-dependent mechanisms using buthionine sulfoximine and N-acetyl cysteine. Along with alcohol, purpurin up-regulated Nrf2 expression in hepatocytes. SIGNIFICANCE: This work confirmed the ameliorative effect of purpurin for alcohol-induced hepatotoxicity by drabbing free radicals and curbing oxidative stress via activation of antioxidant signalling pathways.


Assuntos
Antraquinonas , Doença Hepática Induzida por Substâncias e Drogas , Etanol , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Alanina Transaminase/metabolismo , Antraquinonas/farmacologia , Antioxidantes/farmacologia , Aspartato Aminotransferases/metabolismo , Butionina Sulfoximina/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cisteína/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Etanol/toxicidade , Glutationa/metabolismo , Ligantes , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
15.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166319, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954342

RESUMO

Non-alcoholic steatohepatitis (NASH) is a clinically important spectrum of non-alcoholic fatty liver disease (NAFLD) in humans. NASH is a stage of NAFLD progression wherein liver steatosis accompanies inflammation and pro-fibrotic events. Presently, there are no approved drugs for NASH, which has become a leading cause of liver transplant worldwide. To discover novel drug targets for NASH, we analyzed a human transcriptomic NASH dataset and found Aldo-keto reductase family 1 member B10 (AKR1B10) as a significantly upregulated gene in livers of human NASH patients. Similarly murine Akr1b10 and Aldo-keto reductase family 1 member B8 (Akr1b8) gene, which is a murine ortholog of human AKR1B10, were also found to be upregulated in a mouse model of diet-induced NASH. Furthermore, pharmacological inhibitors of AKR1B10 significantly reduced the pathological features of NASH such as steatosis, inflammation and fibrosis in mouse. In addition, genetic silencing of both mouse Akr1b10 and Akr1b8 significantly reduced the expression of proinflammatory cytokines from hepatocytes. These results, thus, underscore the involvement of murine AKR1B10 and AKR1B8 in the pathogenesis of murine NASH and raise an intriguing possibility of a similar role of AKR1B10 in human NASH.


Assuntos
Oxirredutases do Álcool/metabolismo , Aldo-Ceto Redutases/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Aldo-Ceto Redutases/antagonistas & inibidores , Aldo-Ceto Redutases/genética , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sulindaco/uso terapêutico
16.
Biochim Biophys Acta Mol Cell Res ; 1869(12): 119355, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36113664

RESUMO

Autophagy and telomere maintenance are two cellular survival processes that show a strong correlation during human ageing and cancer growth, however, their causal relationship remains unclear. In this study, using an unbiased transcriptomics approach, we uncover a novel role of autophagy genes in regulating telomere extension and maintenance pathways. Concomitantly, the pharmacological inhibition of ULK1 (Unc-51 like autophagy activating kinase 1) attenuated human telomerase reverse transcriptase (hTERT) gene expression and telomerase activity in HepG2 cells. Furthermore, the suppression of telomerase activity upon ULK1 inhibition was associated with telomere shortening and onset of cellular senescence in HepG2 cells. These results, thus, demonstrate a direct role of autophagy in maintaining cellular longevity via regulation of telomerase activity, which may have implications in the pathophysiology of ageing and cancers.


Assuntos
Neoplasias , Telomerase , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Encurtamento do Telômero
17.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166455, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35680107

RESUMO

Autophagy inhibition is currently considered a novel therapeutic strategy for cancer treatment. Lipoic acid (LA), a naturally occurring compound found in all prokaryotic and eukaryotic cells, inhibits breast cancer cell growth; however, the effect of LA on autophagy-mediated breast cancer cell death remains unknown. Our study identified that LA blocks autophagic flux by inhibiting autophagosome-lysosome fusion and lysosome activity which increases the accumulation of autophagosomes in MCF-7 and MDA-MB231 cells, leading to cell death of breast cancer cells. Interestingly, autophagic flux blockade limits the recycling of cellular fuels, resulting in insufficient substrates for cellular bioenergetics. Therefore, LA impairs cellular bioenergetics by the inhibition of mitochondrial function and glycolysis. We show that LA-induced ROS generation is responsible for the blockade of autophagic flux and cellular bioenergetics in breast cancer cells. Moreover, LA-mediated blockade of autophagic flux and ROS generation may interfere with the regulation of the BCSCs/progenitor phenotype. Here, we demonstrate that LA inhibits mammosphere formation and subpopulation of BCSCs. Together, these results implicate that LA acts as a prooxidant, potent autophagic flux inhibitor, and causes energetic impairment, which may lead to cell death in breast cancer cells/BCSCs.


Assuntos
Neoplasias , Ácido Tióctico , Autofagossomos/metabolismo , Autofagia , Metabolismo Energético , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico
18.
Autophagy ; 17(10): 3269-3270, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34382918

RESUMO

Hormone synthesis and secretion is a highly regulated process governed by metabolic cues. Although peptide hormone action is largely governed by the rate of its synthesis and secretion by endocrine cells, and the levels of its receptors on the target cells, intracellular degradation of the hormone-containing secretory vesicles by lysosomes (crinophagy) adds an additional layer of regulation. In our recent study, we uncovered the regulatory mechanism governing the crinophagic turnover of GCG (glucagon), a glycoprotein hormone secreted by pancreatic α-cells. Our results showed that inhibition of MTORC1 induces crinophagy-mediated degradation of glucagon and decreases its secretion in response to hypoglycemia. Furthermore, we demonstrated that crinophagy-regulated glucagon turnover does not involve macroautophagy. These results suggest that modulation of crinophagy may serve as a novel therapeutic strategy to regulate hormone secretion in endocrine and metabolic pathologies.


Assuntos
Autofagia , Glucagon , Autofagia/fisiologia , Glucagon/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Vesículas Secretórias/metabolismo
19.
Liver Res ; 5(2): 62-71, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34221537

RESUMO

The incidence of non-alcoholic fatty liver disease (NAFLD) is rising rapidly across the globe. NAFLD pathogenesis is largely driven by an imbalance in hepatic energy metabolism and at present, there is no approved drug for its treatment. The liver plays a crucial role in micronutrient metabolism and deregulation of this micronutrient metabolism may contribute to the pathogenesis of NAFLD. Vitamins regulate several enzymatic processes in the liver, and derangement in vitamin metabolism is believed to play a critical role in NAFLD progression. The anti-oxidant activities of vitamin C and E have been attributed to mitigate hepatocyte injury, and alterations in the serum levels of vitamin D, vitamin B12 and folate have shown a strong correlation with NAFLD severity. This review aims to highlight the role of these vitamins, which represent promising therapeutic targets for the management of NAFLD.

20.
Front Biosci (Landmark Ed) ; 26(2): 206-237, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049668

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one the fastest emerging manifestations of the metabolic syndrome worldwide. Non-alcoholic steatohepatitis (NASH), the progressive form of NAFLD, may culminate into cirrhosis and hepatocellular cancer (HCC) and is presently a leading cause of liver transplant. Although a steady progress is seen in understanding of the disease epidemiology, pathogenesis and identifying therapeutic targets, the slowest advancement is seen in the therapeutic field. Currently, there is no FDA approved therapy for this disease and appropriate therapeutic targets are urgently warranted. In this review we discuss the role of lifestyle intervention, pharmacological agents, surgical approaches, and gut microbiome, with regard to therapy for NASH. In particular, we focus the role of insulin sensitizers, thyroid hormone mimetics, antioxidants, cholesterol lowering drugs, incretins and cytokines as therapeutic targets for NASH. We highlight these targets aiming to optimize the future for NASH therapy.


Assuntos
Hepatopatia Gordurosa não Alcoólica/terapia , Carcinoma Hepatocelular/patologia , Progressão da Doença , Microbioma Gastrointestinal , Humanos , Estilo de Vida , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA