RESUMO
Escherichia coli is one of the most commonly used host organisms for the production of recombinant biopharmaceuticals. E. coli is usually characterized by fast growth on cheap media and high productivity, but one drawback is its intracellular product formation. Product recovery from E. coli bioprocesses requires tedious downstream processing (DSP). A typical E. coli DSP for an intracellular product starts with a cell disruption step to access the product. Different methods exist, but a scalable process is usually achieved by high pressure homogenization (HPH). The protocols for HPH are often applied universally without adapting them to the recombinant product, even though HPH can affect product quantity and quality. Based on our previous study on cell disruption efficiency, we aimed at screening operational conditions to maximize not only product quantity, but also product quality of a soluble therapeutic protein expressed in E. coli. We screened for critical process parameters (CPPs) using a multivariate approach (design of experiments; DoE) during HPH to maximize product titer and achieve sufficient product quality, based on predefined critical quality attributes (CQAs). In this case study, we were able to gain valuable knowledge on the efficiency of HPH on E. coli cell disruption, product release and its impact on CQAs. Our results show that HPH is a key unit operation that has to be optimized for each product.
Assuntos
Escherichia coli/genética , Análise Multivariada , Pressão , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêuticoRESUMO
BACKGROUND: The methylotrophic yeast Pichia pastoris is a common host for the production of recombinant proteins. However, hypermannosylation hinders the use of recombinant proteins from yeast in most biopharmaceutical applications. Glyco-engineered yeast strains produce more homogeneously glycosylated proteins, but can be physiologically impaired and show tendencies for cellular agglomeration, hence are hard to cultivate. Further, comprehensive data regarding growth, physiology and recombinant protein production in the controlled environment of a bioreactor are scarce. RESULTS: A Man5GlcNAc2 glycosylating and a Man8-10GlcNAc2 glycosylating strain showed similar morphological traits during methanol induced shake-flask cultivations to produce the recombinant model protein HRP C1A. Both glyco-engineered strains displayed larger single and budding cells than a wild type strain as well as strong cellular agglomeration. The cores of these agglomerates appeared to be less viable. Despite agglomeration, the Man5GlcNAc2 glycosylating strain showed superior growth, physiology and HRP C1A productivity compared to the Man8-10GlcNAc2 glycosylating strain in shake-flasks and in the bioreactor. Conducting dynamic methanol pulsing revealed that HRP C1A productivity of the Man5GlcNAc2 glycosylating strain is best at a temperature of 30 °C. CONCLUSION: This study provides the first comprehensive evaluation of growth, physiology and recombinant protein production of a Man5GlcNAc2 glycosylating strain in the controlled environment of a bioreactor. Furthermore, it is evident that cellular agglomeration is likely triggered by a reduced glycan length of cell surface glycans, but does not necessarily lead to lower metabolic activity and recombinant protein production. Man5GlcNAc2 glycosylated HRP C1A production is feasible, yields active protein similar to the wild type strain, but thermal stability of HRP C1A is negatively affected by reduced glycosylation.
Assuntos
Engenharia Metabólica/métodos , Peroxidase/biossíntese , Pichia/citologia , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Reatores Biológicos , Estabilidade Enzimática , Citometria de Fluxo , Glicosilação , Pichia/fisiologiaRESUMO
Filamentous fungi are used for the production of a multitude of highly relevant biotechnological products like citric acid and penicillin. In submerged culture, fungi can either grow in dispersed form or as spherical pellets consisting of aggregated hyphal structures. Pellet morphology, process control and productivity are highly interlinked. On the one hand, process control in a bioreactor usually demands for compact and small pellets due to rheological issues. On the other hand, optimal productivity might be associated with less dense and larger morphology. Over the years, several publications have dealt with aforementioned relations within the confines of specific organisms and products. However, contributions which evaluate such interlinkages across several fungal species are scarce. For this purpose, we are looking into methods to manipulate fungal pellet morphology in relation to individual species and products. This review attempts to address (i) how variability of pellet morphology can be assessed and (ii) how morphology is linked to productivity. Firstly, the mechanism of pellet formation is outlined. Subsequently, the description and analysis of morphological variations are discussed to finally establish interlinkages between productivity, performance and morphology across different fungal species.
Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Fungos/crescimento & desenvolvimento , Microbiologia Industrial/métodos , ReologiaRESUMO
Against the outdated belief that inclusion bodies (IBs) in Escherichia coli are only inactive aggregates of misfolded protein, and thus should be avoided during recombinant protein production, numerous biopharmaceutically important proteins are currently produced as IBs. To obtain correctly folded, soluble product, IBs have to be processed, namely, harvested, solubilized, and refolded. Several years ago, it was discovered that, depending on cultivation conditions and protein properties, IBs contain partially correctly folded protein structures, which makes IB processing more efficient. Here, we present a method of tailored induction of recombinant protein production in E. coli by a mixed feed system using glucose and lactose and its impact on IB formation. Our method allows tuning of IB amount, IB size, size distribution, and purity, which does not only facilitate IB processing, but is also crucial for potential direct applications of IBs as nanomaterials and biomaterials in regenerative medicine.
Assuntos
Escherichia coli/metabolismo , Corpos de Inclusão/metabolismo , Proteínas Recombinantes/biossíntese , Meios de Cultura , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucose/metabolismo , Corpos de Inclusão/genética , Lactose/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/genética , SolubilidadeRESUMO
Downstream process development for recombinant glycoproteins from yeast is cumbersome due to hyperglycosylation of target proteins. In a previous study, we purified three recombinant glycoproteins from Pichia pastoris using a simple two-step flowthrough mode approach using monolithic columns. In this study, we investigated a novel automated data science approach for identifying purification conditions for such glycoproteins using monolithic columns. We performed three sets of design of experiments in analytical scale to determine the separation efficiency of monolithic columns for three different recombinant horseradish peroxidase (HRP) isoenzymes. For ease of calculation, we introduced an arbitrary term, the relative impurity removal (IR), which is representative of the amount of impurities cleared. Both, the experimental part and the data analysis were automated and took less than 40 min for each HRP isoenzyme. We tested the identified purification conditions in laboratory scale and performed respective offline analyses to verify results from analytical scale. We found a clear correlation between the IR estimated online through our novel data-driven approach and the IR determined offline. Summarizing, we present a novel methodology, applying analytical scale advantages which can be used for fast and efficient DSP development for recombinant glycoproteins from yeast without offline analyses.
Assuntos
Cromatografia por Troca Iônica/métodos , Glicoproteínas/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Automação Laboratorial , Glicoproteínas/análise , Glicoproteínas/química , Pichia/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/químicaRESUMO
BACKGROUND: The methylotrophic yeast Pichia pastoris is a well-studied host organism for recombinant protein production, which is usually regulated either by a constitutive promoter (e.g. promoter of glyceraldehyde-3-phosphate dehydrogenase; PGAP) or an inducible promoter (e.g. promoter of alcohol oxidase 1; PAOX1). Both promoter systems have several advantages and disadvantages; with one of the main disadvantages being their lack of tunability. Various novel promoter systems, which are either inducible or de-repressed, allowing higher degrees of freedom, have been reported. Recently, bi-directional promoter systems in P. pastoris with two promoter systems regulating recombinant expression of one or more genes were developed. In this study, we introduce a novel bi-directional promoter system combining a modified catalase promoter system (PDC; derepressible and inducible) and the traditional PAOX1, allowing tunable recombinant protein production. RESULTS: We characterized a recombinant P. pastoris strain, carrying the novel bi-directional promoter system, during growth and production in three dynamic bioreactor cultivations. We cloned the model enzyme cellobiohydralase downstream of either promoter and applied different feeding strategies to determine the physiological boundaries of the strain. We succeeded in demonstrating tunability of recombinant protein production solely in response to the different feeding strategies and identified a mixed feed regime allowing highest productivity. CONCLUSION: In this feasibility study, we present the first controlled bioreactor experiments with a recombinant P. pastoris strain carrying a novel bi-directional promotor combination of a catalase promoter variant (PDC) and the traditional PAOX1. We demonstrated that this bi-directional promoter system allows tunable recombinant protein expression only in response to the available C-sources. This bi-directional promoter system offers a high degree of freedom for bioprocess design and development, making bi-directional promoters in P. pastoris highly attractive for recombinant protein production.
Assuntos
Pichia/genética , Pichia/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Oxirredutases do Álcool/genética , Reatores Biológicos , Catalase/genética , Celulose 1,4-beta-Celobiosidase/genética , Estudos de Viabilidade , Fermentação , Gliceraldeído-3-Fosfato Desidrogenases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
BACKGROUND: Cell disruption is a key unit operation to make valuable, intracellular target products accessible for further downstream unit operations. Independent of the applied cell disruption method, each cell disruption process must be evaluated with respect to disruption efficiency and potential product loss. Current state-of-the-art methods, like measuring the total amount of released protein and plating-out assays, are usually time-delayed and involve manual intervention making them error-prone. An automated method to monitor cell disruption efficiency at-line is not available to date. RESULTS: In the current study we implemented a methodology, which we had originally developed to monitor E. coli cell integrity during bioreactor cultivations, to automatically monitor and evaluate cell disruption of a recombinant E. coli strain by high-pressure homogenization. We compared our tool with a library of state-of-the-art methods, analyzed the effect of freezing the biomass before high-pressure homogenization and finally investigated this unit operation in more detail by a multivariate approach. CONCLUSION: A combination of HPLC and automated data analysis describes a valuable, novel tool to monitor and evaluate cell disruption processes. Our methodology, which can be used both in upstream (USP) and downstream processing (DSP), describes a valuable tool to evaluate cell disruption processes as it can be implemented at-line, gives results within minutes after sampling and does not need manual intervention.
Assuntos
Cromatografia Líquida de Alta Pressão , Escherichia coli/metabolismo , Proteínas Recombinantes/análise , Área Sob a Curva , Automação , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Pressão , Curva ROC , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genéticaRESUMO
The bacterium Escherichia coli is a well-studied recombinant host organism with a plethora of applications in biotechnology. Highly valuable biopharmaceuticals, such as antibody fragments and growth factors, are currently being produced in E. coli. However, the high metabolic burden during recombinant protein production can lead to cell death, consequent lysis, and undesired product loss. Thus, fast and precise analyzers to monitor E. coli bioprocesses and to retrieve key process information, such as the optimal time point of harvest, are needed. However, such reliable monitoring tools are still scarce to date. In this study, we cultivated an E. coli strain producing a recombinant single-chain antibody fragment in the cytoplasm. In bioreactor cultivations, we purposely triggered cell lysis by pH ramps. We developed a novel toolbox using UV chromatograms as fingerprints and chemometric techniques to monitor these lysis events and used flow cytometry (FCM) as reference method to quantify viability offline. Summarizing, we were able to show that a novel toolbox comprising HPLC chromatogram fingerprinting and data science tools allowed the identification of E. coli lysis in a fast and reliable manner. We are convinced that this toolbox will not only facilitate E. coli bioprocess monitoring but will also allow enhanced process control in the future.
Assuntos
Técnicas Bacteriológicas/métodos , Biotecnologia/métodos , Escherichia coli/fisiologia , Proteínas Recombinantes/isolamento & purificação , Anticorpos/genética , Anticorpos/metabolismo , Reatores Biológicos , CromatografiaRESUMO
Intermittent bolus feeding for E. coli cultivations in minibioreactor systems (MBRs) profoundly affects the cell metabolism. Bolus feeding leads to temporal substrate surplus and transient oxygen limitation, which triggers the formation of inhibitory byproducts. Due to the high oxygen demand right after the injection of the substrate, the dissolved oxygen tension (DOT) signal exhibits a negative pulse. This contribution describes and analyzes this DOT response in E. coli minibioreactor cultivations. In addition to gaining information on culture conditions, a unique response behavior in the DOT signal was observed in the analysis. This response appeared only at a dilution ratio per biomass unit higher than a certain threshold. The analysis highlights a plausible relationship between a metabolic adaptation behavior and the newly observed DOT signal segment not reported in the literature. A hypothesis that links particular DOT segments to specific metabolic states is proposed. The quantitative analysis and mechanistic model simulations support this hypothesis and show the possibility of obtaining cell physiological and growth parameters from the DOT signal.
RESUMO
Soluble expression of recombinant proteins in E. coli is often done by translocation of the product across the inner membrane (IM) into the periplasm, where it is retained by the outer membrane (OM). While the integrity of the IM is strongly coupled to viability and impurity release, a decrease in OM integrity (corresponding to increased "leakiness") leads to accumulation of product in the extracellular space, strongly impacting the downstream process. Whether leakiness is desired or not, differential monitoring and control of IM and OM integrity are necessary for an efficient E. coli bioprocess in compliance with the guidelines of Quality by Design and Process Analytical Technology. In this review, we give an overview of relevant monitoring tools, summarize the research on factors affecting E. coli membrane integrity and provide a brief discussion on how the available monitoring technology can be implemented in real-time control of E. coli cultivations.
Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas da Membrana Bacteriana Externa , Membrana Celular , Periplasma , Proteínas Recombinantes/genéticaRESUMO
Recombinant protein production in E. coli often leads to the formation of inclusion bodies (IBs). Although downstream processing of IBs has the reputation of being a great hurdle, advantages of IBs can be substantial. Highly pure recombinant protein with the possibility of correctly folded structures and an easy separation from cell matter are decisive factors that make IB processes so interesting. Product yield, purity and biological activity of the refolded protein are the responses to evaluate an IB process. The objective of this case study was to develop a refolding process in an integrated manner. The effects of the unit operations 1) homogenization, 2) IB wash and 3) IB solubilisation as well as their interdependencies were analyzed. We revealed interesting factor interactions between homogenization and IB wash, as well as homogenization and solubilisation, which would be overlooked if the single unit operations were investigated individually. Furthermore, we found that homogenization was a key unit operation for IB processing. By changing the conditions during homogenization only, the product yield, purity and biological activity of the refolded product was affected 2-fold, 1.2-fold and 2.5-fold, respectively.
Assuntos
Escherichia coli , Corpos de Inclusão , Proteínas RecombinantesRESUMO
Industrial production processes, which utilize mammalian cells for the production of therapeutic proteins are routinely designed to include temperature and pH shifts. The process conditions are shifted away from growth promoting conditions towards a state of decreased metabolic activity. This results in the extension of the cultivation duration and therefore in a higher final product concentration. Although the correct timing of these shifts is essential for peak process performance, not many studies have been investigating this topic. In this work temperature and pH shift were optimized with a mechanistic model to increase the final product concentration in comparison to an established industrial fed-batch process. The major advantage of the mechanistic in comparison to a data-driven approach lies in the reduced number of experiments, which is needed. Therefore process development is faster, which decreases the time of the product to the market. Based on the optimization, an increased final product concentration of 14% was achieved in comparison to an already established industrial fed-batch process with the same cell line. Furthermore, the space-time-yield of the process did increase in comparison, resulting in a 20% increase of the final volumetric product concentration.