Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(7): 1842-1845, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221780

RESUMO

Post-compression methods for ultrafast laser pulses typically face challenging limitations, including saturation effects and temporal pulse breakup, when large compression factors and broad bandwidths are targeted. To overcome these limitations, we exploit direct dispersion control in a gas-filled multi-pass cell, enabling, for the first time to the best of our knowledge, single-stage post-compression of 150 fs pulses and up to 250 µJ pulse energy from an ytterbium (Yb) fiber laser down to sub-20 fs. Dispersion-engineered dielectric cavity mirrors are used to achieve nonlinear spectral broadening dominated by self-phase modulation over large compression factors and bandwidths at 98% throughput. Our method opens a route toward single-stage post-compression of Yb lasers into the few-cycle regime.

2.
Opt Lett ; 48(18): 4753-4756, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707894

RESUMO

Advancing ultrafast high-repetition-rate lasers to shortest pulse durations comprising only a few optical cycles while pushing their energy into the multi-millijoule regime opens a route toward terawatt-class peak powers at unprecedented average power. We explore this route via efficient post-compression of high-energy 1.2 ps pulses from an ytterbium InnoSlab laser to 9.6 fs duration using gas-filled multi-pass cells (MPCs) at a repetition rate of 1 kHz. Employing dual-stage compression with a second MPC stage supporting a close-to-octave-spanning bandwidth enabled by dispersion-matched dielectric mirrors, a record compression factor of 125 is reached at 70% overall efficiency, delivering 6.7 mJ pulses with a peak power of ∼0.3 TW. Moreover, we show that post-compression can improve the temporal contrast at multi-picosecond delay by at least one order of magnitude. Our results demonstrate efficient conversion of multi-millijoule picosecond lasers to high-peak-power few-cycle sources, prospectively opening up new parameter regimes for laser plasma physics, high energy physics, biomedicine, and attosecond science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA