Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Mol Biol Evol ; 38(12): 5782-5805, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34469576

RESUMO

Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.


Assuntos
Drosophila melanogaster , Metagenômica , Animais , Drosophila melanogaster/genética , Frequência do Gene , Genética Populacional , Genômica
2.
Proc Natl Acad Sci U S A ; 116(40): 20025-20032, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527278

RESUMO

Population genomic data has revealed patterns of genetic variation associated with adaptation in many taxa. Yet understanding the adaptive process that drives such patterns is challenging; it requires disentangling the ecological agents of selection, determining the relevant timescales over which evolution occurs, and elucidating the genetic architecture of adaptation. Doing so for the adaptation of hosts to their microbiome is of particular interest with growing recognition of the importance and complexity of host-microbe interactions. Here, we track the pace and genomic architecture of adaptation to an experimental microbiome manipulation in replicate populations of Drosophila melanogaster in field mesocosms. Shifts in microbiome composition altered population dynamics and led to divergence between treatments in allele frequencies, with regions showing strong divergence found on all chromosomes. Moreover, at divergent loci previously associated with adaptation across natural populations, we found that the more common allele in fly populations experimentally enriched for a certain microbial group was also more common in natural populations with high relative abundance of that microbial group. These results suggest that microbiomes may be an agent of selection that shapes the pattern and process of adaptation and, more broadly, that variation in a single ecological factor within a complex environment can drive rapid, polygenic adaptation over short timescales.


Assuntos
Adaptação Biológica , Drosophila melanogaster/fisiologia , Genoma , Genômica , Microbiota , Animais , Evolução Biológica , Frequência do Gene , Genética Populacional , Genômica/métodos , Densidade Demográfica , Seleção Genética
3.
Mol Ecol ; 30(12): 2817-2830, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33914989

RESUMO

The insulin/insulin-like growth factor signalling pathway has been hypothesized as a major determinant of life-history profiles that vary adaptively in natural populations. In Drosophila melanogaster, multiple components of this pathway vary predictably with latitude; this includes foxo, a conserved gene that regulates insulin signalling and has pleiotropic effects on a variety of fitness-associated traits. We hypothesized that allelic variation at foxo contributes to genetic variance for size-related traits that vary adaptively with latitude. We first examined patterns of variation among natural populations along a latitudinal transect in the eastern United States and show that thorax length, wing area, wing loading, and starvation tolerance exhibit significant latitudinal clines for both males and females but that development time does not vary predictably with latitude. We then generated recombinant outbred populations and show that naturally occurring allelic variation at foxo, which exhibits stronger clinality than expected, is associated with the same traits that vary with latitude in the natural populations. Our results suggest that allelic variation at foxo contributes to adaptive patterns of life-history variation in natural populations of this genetic model.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Aclimatação , Adaptação Fisiológica/genética , Alelos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Fatores de Transcrição Forkhead/genética , Variação Genética , Masculino , Polimorfismo Genético , Estados Unidos
4.
Biometals ; 33(6): 293-303, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33026606

RESUMO

Insect epidermal cells secrete a cuticle that serves as an exoskeleton providing mechanical rigidity to each individual, but also insulation, camouflage or communication within their environment. Cuticle deposition and hardening (sclerotization) and pigment synthesis are parallel processes requiring tyrosinase activity, which depends on an unidentified copper-dependent enzyme component in Drosophila melanogaster. We determined the metallomes of fly strains selected for lighter or darker cuticles in a laboratory evolution experiment, asking whether any specific element changed in abundance in concert with pigment deposition. The results showed a correlation between total iron content and strength of pigmentation, which was further corroborated by ferritin iron quantification. To ask if the observed increase in iron body content along with increased pigment deposition could be generalizable, we crossed yellow and ebony alleles causing light and dark pigmentation, respectively, into similar genetic backgrounds and measured their metallomes. Iron remained unaffected in the various mutants providing no support for a causative link between pigmentation and iron content. In contrast, the combined analysis of both experiments suggested instead a correlation between pigment deposition and total copper body content, possibly due to increased demand for epidermal tyrosinase activity.


Assuntos
Cobre/análise , Drosophila melanogaster/química , Animais , Cobre/metabolismo , Drosophila melanogaster/metabolismo , Melaninas/análise , Melaninas/metabolismo , Pigmentação
5.
Mol Ecol ; 27(17): 3525-3540, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30051644

RESUMO

Water availability is a major environmental challenge to a variety of terrestrial organisms. In insects, desiccation tolerance varies predictably over spatial and temporal scales and is an important physiological determinant of fitness in natural populations. Here, we examine the dynamics of desiccation tolerance in North American populations of Drosophila melanogaster using: (a) natural populations sampled across latitudes and seasons; (b) experimental evolution in field mesocosms over seasonal time; (c) genome-wide associations to identify SNPs/genes associated with variation for desiccation tolerance; and (d) subsequent analysis of patterns of clinal/seasonal enrichment in existing pooled sequencing data of populations sampled in both North America and Australia. A cline in desiccation tolerance was observed, for which tolerance exhibited a positive association with latitude; tolerance also varied predictably with culture temperature, demonstrating a significant degree of thermal plasticity. Desiccation tolerance evolved rapidly in field mesocosms, although only males showed differences in desiccation tolerance between spring and autumn collections from natural populations. Water loss rates did not vary significantly among latitudinal or seasonal populations; however, changes in metabolic rates during prolonged exposure to dry conditions are consistent with increased tolerance in higher latitude populations. Genome-wide associations in a panel of inbred lines identified twenty-five SNPs in twenty-one loci associated with sex-averaged desiccation tolerance, but there is no robust signal of spatially varying selection on genes associated with desiccation tolerance. Together, our results suggest that desiccation tolerance is a complex and important fitness component that evolves rapidly and predictably in natural populations.


Assuntos
Adaptação Fisiológica/genética , Desidratação/genética , Drosophila melanogaster/genética , Genética Populacional , Animais , Austrália , Drosophila melanogaster/fisiologia , Estudos de Associação Genética , América do Norte , Polimorfismo de Nucleotídeo Único , Estações do Ano , Análise Espaço-Temporal , Temperatura
7.
Mol Ecol ; 25(3): 741-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26615085

RESUMO

Preadult determinants of adult fitness and behaviour have been documented in a variety of organisms with complex life cycles, but little is known about expression patterns of genes underlying these adult traits. We explored the effects of differences in egg-to-adult development time on adult transcriptome and cuticular hydrocarbon variation in order to understand the nature of the genetic correlation between preadult development time and premating isolation between populations of Drosophila mojavensis reared in different host cactus environments. Transcriptome variation was analysed separately in flies reared on each host and revealed that hundreds of genes in adults were differentially expressed (FDR P < 0.05) due to development time differences. For flies reared on pitaya agria cactus, longer preadult development times caused increased expression of genes in adults enriched for ribosome production, protein metabolism, chromatin remodelling and regulation of alternate splicing and transcription. Baja California flies reared on organ pipe cactus showed fewer differentially expressed genes in adults due to longer preadult development time, but these were enriched for ATP synthesis and the TCA cycle. Mainland flies reared on organ pipe cactus with shorter development times showed increased transcription of genes enriched for mitochondria and energy production, protein synthesis and glucose metabolism: adults with longer development times had increased expression of genes enriched for adult life span, cuticle proteins and ion binding, although most differentially expressed genes were unannotated. Differences due to population, sex, mating status and their interactions were also assessed. Adult cuticular hydrocarbon profiles also showed shifts due to egg-to-adult development time and were influenced by population and mating status. These results help to explain why preadult life history variation determines subsequent expression of the adult transcriptome along with traits involved with reproductive isolation and revealed previously undocumented connections between genetic and environmental influences over the entire life cycle in this desert insect.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/genética , Ecossistema , Genética Populacional , Transcriptoma , Animais , Cactaceae , Feminino , Estágios do Ciclo de Vida , Masculino , México
8.
Biol Lett ; 12(10)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28120808

RESUMO

Pigmentation is a classic phenotype that varies widely and adaptively in nature both within and among taxa. Genes underlying pigmentation phenotype are highly pleiotropic, creating the potential for functional trade-offs. However, the basic tenets of this trade-off hypothesis with respect to life-history traits have not been directly addressed. In natural populations of Drosophila melanogaster, the degree of melanin pigmentation covaries with fecundity and several other fitness traits. To examine correlations and potential trade-offs associated with variation in pigmentation, we selected replicate outbred populations for extreme pigmentation phenotypes. Replicate populations responded rapidly to the selection regime and after 100 generations of artificial selection were phenotyped for pigmentation as well as the two basic fitness parameters of fecundity and longevity. Our data demonstrate that selection on pigmentation resulted in a significant shift in both fecundity and longevity profiles. Selection for dark pigmentation resulted in greater fecundity and no pronounced change in longevity, whereas selection for light pigmentation decreased longevity but did not affect fecundity. Our results indicate the pleiotropic nature of alleles underlying pigmentation phenotype and elucidate possible trade-offs between pigmentation and fitness traits that may shape patterns of phenotypic variation in natural populations.


Assuntos
Drosophila melanogaster/genética , Animais , Drosophila melanogaster/fisiologia , Feminino , Fertilidade/genética , Longevidade/genética , Masculino , Fenótipo , Pigmentação/genética , Seleção Genética
9.
Mol Ecol ; 24(1): 151-79, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25442828

RESUMO

We compared whole transcriptome variation in six pre-adult stages and seven adult female ages in two populations of cactophilic Drosophila mojavensis reared on two host plants to understand how differences in gene expression influence standing life history variation. We used singular value decomposition (SVD) to identify dominant trajectories of life cycle gene expression variation, performed pairwise comparisons of stage and age differences in gene expression across the life cycle, identified when genes exhibited maximum levels of life cycle gene expression, and assessed population and host cactus effects on gene expression. Life cycle SVD analysis returned four significant components of transcriptional variation, revealing functional enrichment of genes responsible for growth, metabolic function, sensory perception, neural function, translation and ageing. Host cactus effects on female gene expression revealed population- and stage-specific differences, including significant host plant effects on larval metabolism and development, as well as adult neurotransmitter binding and courtship behaviour gene expression levels. In 3- to 6-day-old virgin females, significant upregulation of genes associated with meiosis and oogenesis was accompanied by downregulation of genes associated with somatic maintenance, evidence for a life history trade-off. The transcriptome of D. mojavensis reared in natural environments throughout its life cycle revealed core developmental transitions and genome-wide influences on life history variation in natural populations.


Assuntos
Drosophila/genética , Meio Ambiente , Estágios do Ciclo de Vida/genética , Transcriptoma , Animais , Cactaceae , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , México , Dados de Sequência Molecular , Análise de Sequência de DNA
10.
Curr Opin Insect Sci ; 64: 101220, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848812

RESUMO

Declines in insect populations have gained formidable attention. Given their crucial role in the ecosystem, the causes of declining insect populations must be investigated. However, the insect clade has been associated with low extinction and high diversification rates. It is unlikely that insects underwent mass extinctions in the past. However, the pace of current climate change could make insect populations vulnerable to extinction. We propose genome size (GS) and transposable elements (TEs) to be rough estimates to assess extinction risk. Larger GS and/or proliferating TEs have been associated with adaptation in rapid climate change scenarios. We speculate that unstable, stressful environmental conditions are strongly associated with GS and TE expansion, which could be further correlated with adaptations. Alternately, stressful conditions trigger TE bursts that are not purged in smaller populations. GS and TE loads could be indicators of small effective populations in the wild, likely experiencing bottlenecks or drastic climatic perturbations, which calls for an urgent assessment of extinction risk.


Assuntos
Mudança Climática , Genoma de Inseto , Insetos , Animais , Insetos/genética , Insetos/fisiologia , Elementos de DNA Transponíveis , Tamanho do Genoma , Extinção Biológica
11.
Mol Ecol ; 22(10): 2698-715, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23505972

RESUMO

We used whole-transcriptome microarrays to assess changes in gene expression and monitored mortality rates and epicuticular hydrocarbons (CHCs) in response to desiccation stress in four natural populations of Drosophila mojavensis from Baja California and mainland Mexico. Desiccation had the greatest effect on gene expression, followed by biogeographical variation at regional and population levels. Genes involved in environmental sensing and cuticular structure were up-regulated in dry conditions, while genes involved in transcription itself were down-regulated. Flies from Baja California had higher expression of reproductive and mitochondrial genes, suggesting that these populations have greater fecundity and higher metabolic rates. Host plant differences had a surprisingly minor effect on the transcriptome. In most cases, desiccation-caused mortality was greater in flies reared on fermenting cactus tissues than that on laboratory media. Water content of adult females and males was significantly different and was lower in Baja California males. Different groups of CHCs simultaneously increased and decreased in amounts due to desiccation exposure of 9 and 18 h and were population-specific and dependent on larval rearing substrates. Overall, we observed that changes in gene expression involved a coordinated response of behavioural, cuticular and metabolic genes. Together with differential expression of cuticular hydrocarbons, this study revealed some of the mechanisms that have allowed D. mojavensis to exploit its harsh desert conditions. Certainly, for D. mojavensis that uses different host plants, population-level understanding of responses to stressors associated with future climate change in desert regions must be evaluated across geographical and local ecological scales.


Assuntos
Drosophila/genética , Regulação da Expressão Gênica/fisiologia , Hidrocarbonetos/metabolismo , Fenótipo , Análise de Variância , Animais , Peso Corporal , Biologia Computacional , Desidratação , Clima Desértico , Drosophila/metabolismo , Drosophila/fisiologia , Feminino , Fertilidade/genética , Perfilação da Expressão Gênica , Masculino , México , Análise em Microsséries , Anotação de Sequência Molecular , Mortalidade , Especificidade da Espécie , Fatores de Tempo
12.
Artigo em Inglês | MEDLINE | ID: mdl-23182926

RESUMO

Tropical fruit flies (Drosophilidae) differ from temperate drosophilids in several ecophysiological traits, such as desiccation tolerance. Moreover, many species show significant differences in desiccation tolerance across geographical populations. Fruit flies from the tropical and subtropical Indian subcontinent show a clinal pattern for desiccation tolerance which is similar for more than a dozen species studied so far, suggesting adaptation to climatic differences. We performed a meta-analysis to investigate which particular climatic patterns modulate desiccation tolerance in natural populations of drosophilids. Latitude of the sampling site explained most of the variability. Seasonal thermal amplitude (fluctuations in temperature expressed as coefficient of variation) was the strongest climatic factor shaping desiccation tolerance of flies, while factors measuring humidity directly were not important. Implications for survival of flies after future climate change are suggested.


Assuntos
Adaptação Fisiológica/genética , Dessecação , Drosophila/fisiologia , Animais , Mudança Climática , Drosophila/genética , Variação Genética , Geografia , Umidade , Índia , Temperatura , Clima Tropical
13.
Front Physiol ; 13: 880728, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304576

RESUMO

Clines are observable gradients that reflect continuous change in biological traits of species across geographical ranges. Clinal gradients could vary at geographic scales (latitude and altitude). Since clinal variations represent active genomic responses at the population level they (clines) provide an immense power to address questions related to climatic change. With the fast pace of climate change i.e. warming, populations are also likely to exhibit rapid responses; at both the phenotypic and genotypic levels. We seek to understand how clinal variation could be used to anticipate climatic responses using Drosophila, a pervasively used inter-disciplinary model system owing to its molecular repertoire. The genomic information coupled with the phenotypic variation greatly facilitates our understanding of the Drosophilidae response to climate change. We discuss traits associated with clinal variation at the phenotypic level as well as their underlying genetic regulators. Given prevailing climatic conditions and future projections for climate change, clines could emerge as monitoring tools to track the cross-talk between climatic variables and organisms.

14.
Science ; 375(6586): eabj7484, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298245

RESUMO

Direct observation of evolution in response to natural environmental change can resolve fundamental questions about adaptation, including its pace, temporal dynamics, and underlying phenotypic and genomic architecture. We tracked the evolution of fitness-associated phenotypes and allele frequencies genome-wide in 10 replicate field populations of Drosophila melanogaster over 10 generations from summer to late fall. Adaptation was evident over each sampling interval (one to four generations), with exceptionally rapid phenotypic adaptation and large allele frequency shifts at many independent loci. The direction and basis of the adaptive response shifted repeatedly over time, consistent with the action of strong and rapidly fluctuating selection. Overall, we found clear phenotypic and genomic evidence of adaptive tracking occurring contemporaneously with environmental change, thus demonstrating the temporally dynamic nature of adaptation.


Assuntos
Aclimatação , Evolução Biológica , Drosophila melanogaster/fisiologia , Seleção Genética , Animais , Drosophila melanogaster/genética , Ecossistema , Meio Ambiente , Evolução Molecular , Frequência do Gene , Aptidão Genética , Genoma de Inseto , Fenótipo , Estações do Ano
15.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33677482

RESUMO

Genetic association studies seek to uncover the link between genotype and phenotype, and often utilize inbred reference panels as a replicable source of genetic variation. However, inbred reference panels can differ substantially from wild populations in their genotypic distribution, patterns of linkage-disequilibrium, and nucleotide diversity. As a result, associations discovered using inbred reference panels may not reflect the genetic basis of phenotypic variation in natural populations. To address this problem, we evaluated a mapping population design where dozens to hundreds of inbred lines are outbred for few generations, which we call the Hybrid Swarm. The Hybrid Swarm approach has likely remained underutilized relative to pre-sequenced inbred lines due to the costs of genome-wide genotyping. To reduce sequencing costs and make the Hybrid Swarm approach feasible, we developed a computational pipeline that reconstructs accurate whole genomes from ultra-low-coverage (0.05X) sequence data in Hybrid Swarm populations derived from ancestors with phased haplotypes. We evaluate reconstructions using genetic variation from the Drosophila Genetic Reference Panel as well as variation from neutral simulations. We compared the power and precision of Genome-Wide Association Studies using the Hybrid Swarm, inbred lines, recombinant inbred lines (RILs), and highly outbred populations across a range of allele frequencies, effect sizes, and genetic architectures. Our simulations show that these different mapping panels vary in their power and precision, largely depending on the architecture of the trait. The Hybrid Swam and RILs outperform inbred lines for quantitative traits, but not for monogenic ones. Taken together, our results demonstrate the feasibility of the Hybrid Swarm as a cost-effective method of fine-scale genetic mapping.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Genoma , Genótipo , Desequilíbrio de Ligação , Fenótipo
16.
PLoS One ; 16(6): e0252920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111165

RESUMO

Insects hold considerable ecological and agricultural importance making it vital to understand the factors impacting their reproductive output. Environmental stressors are examples of such factors which have a substantial and significant influence on insect reproductive fitness. Insects are also ectothermic and small in size which makes them even more susceptible to environmental stresses. The present study assesses the consequence of desiccation on the mating latency and copulations duration in tropical Drosophila melanogaster. We tested flies for these reproductive behavioral parameters at varying body water levels and with whole metabolome analysis in order to gain a further understanding of the physiological response to desiccation. Our results showed that the duration of desiccation is positively correlated with mating latency and mating failure, while having no influence on the copulation duration. The metabolomic analysis revealed three biological pathways highly affected by desiccation: starch and sucrose metabolism, galactose metabolism, and phenylalanine, tyrosine and tryptophan biosynthesis. These results are consistent with carbohydrate metabolism providing an energy source in desiccated flies and also suggests that the phenylalanine biosynthesis pathway plays a role in the reproductive fitness of the flies. Desiccation is a common issue with smaller insects, like Drosophila and other tropical insects, and our findings indicate that this lack of ambient water can immediately and drastically affect the insect reproductive behaviour, which becomes more crucial because of unpredictable and dynamic weather conditions.


Assuntos
Copulação/fisiologia , Drosophila melanogaster/fisiologia , Preferência de Acasalamento Animal/fisiologia , Metabolômica/métodos , Animais , Metabolismo dos Carboidratos , Dessecação , Drosophila melanogaster/metabolismo , Metabolismo Energético , Feminino , Masculino , Fenilalanina/metabolismo , Amido/metabolismo , Estresse Fisiológico , Sacarose/metabolismo
17.
Ecol Evol ; 11(1): 352-364, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437434

RESUMO

The insect cuticle is the interface between internal homeostasis and the often harsh external environment. Cuticular hydrocarbons (CHCs) are key constituents of this hard cuticle and are associated with a variety of functions including stress response and communication. CHC production and deposition on the insect cuticle vary among natural populations and are affected by developmental temperature; however, little is known about CHC plasticity in response to the environment experienced following eclosion, during which time the insect cuticle undergoes several crucial changes. We targeted this crucial to important phase and studied post-eclosion temperature effects on CHC profiles in two natural populations of Drosophila melanogaster. A forty-eight hour post-eclosion exposure to three different temperatures (18, 25, and 30°C) significantly affected CHCs in both ancestral African and more recently derived North American populations of D. melanogaster. A clear shift from shorter to longer CHCs chain length was observed with increasing temperature, and the effects of post-eclosion temperature varied across populations and between sexes. The quantitative differences in CHCs were associated with variation in desiccation tolerance among populations. Surprisingly, we did not detect any significant differences in water loss rate between African and North American populations. Overall, our results demonstrate strong genetic and plasticity effects in CHC profiles in response to environmental temperatures experienced at the adult stage as well as associations with desiccation tolerance, which is crucial in understanding holometabolan responses to stress.

18.
Animals (Basel) ; 11(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919662

RESUMO

Only a small subset of all the transcribed RNAs are used as a template for protein translation, whereas RNA molecules that are not translated play a very important role as regulatory non-coding RNAs (ncRNAs). Besides traditionally known RNAs (ribosomal and transfer RNAs), ncRNAs also include small non-coding RNAs (sncRNAs) and long non-coding RNAs (lncRNAs). The lncRNAs, which were initially thought to be junk, have gained a great deal attention because of their regulatory roles in diverse biological processes in animals and plants. Insects are the most abundant and diverse group of animals on this planet. Recent studies have demonstrated the role of lncRNAs in almost all aspects of insect development, reproduction, and genetic plasticity. In this review, we describe the function and molecular mechanisms of the mode of action of different insect lncRNAs discovered up to date.

19.
Elife ; 102021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34155971

RESUMO

To advance our understanding of adaptation to temporally varying selection pressures, we identified signatures of seasonal adaptation occurring in parallel among Drosophila melanogaster populations. Specifically, we estimated allele frequencies genome-wide from flies sampled early and late in the growing season from 20 widely dispersed populations. We identified parallel seasonal allele frequency shifts across North America and Europe, demonstrating that seasonal adaptation is a general phenomenon of temperate fly populations. Seasonally fluctuating polymorphisms are enriched in large chromosomal inversions, and we find a broad concordance between seasonal and spatial allele frequency change. The direction of allele frequency change at seasonally variable polymorphisms can be predicted by weather conditions in the weeks prior to sampling, linking the environment and the genomic response to selection. Our results suggest that fluctuating selection is an important evolutionary force affecting patterns of genetic variation in Drosophila.


Assuntos
Adaptação Biológica , Inversão Cromossômica , Drosophila melanogaster/fisiologia , Frequência do Gene , Polimorfismo Genético , Animais , Áustria , Drosophila melanogaster/genética , Masculino , Ontário , Estações do Ano , Seleção Genética , Espanha , Ucrânia , Estados Unidos
20.
J Insect Sci ; 9: 1-10, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20050769

RESUMO

A possible link between melanization and desiccation resistance can be inferred if within population differences in melanization find significant correlations with desiccation resistance and its mechanistic basis i.e. rate of water loss/hr. Accordingly, darker, intermediate and lighter phenotypes of body melanization were analyzed in wild and laboratory reared Drosophila melanogaster L. (Diptera: Clyclorrapha) populations from highland and lowland sites located in close proximity at five different latitudinal locations (11.15 degrees N to 31.06 degrees N) within the Indian subcontinent. In large population samples, occurrence of significant within population variability made it possible to assort non-overlapping phenotypes of body coloration (i.e. lighter (< 25%), intermediate (30 to 40%) and darker (> 45%)) for all the populations which were further investigated for desiccation resistance and rate of water loss/hr. Significantly, higher desiccation resistance but much reduced rate of water loss/hr were observed in darker and intermediate phenotypes in all the populations. By contrast, lighter phenotypes exhibited lower desiccation tolerance but higher rate of water loss/hr. A regression analysis between traits provided similar slope values for wild and laboratory populations. For all three physiological traits, predicted trait values from multiple regression analysis as a simultaneous function of annual average temperature and relative humidity, matched the observed values. We infer that parallel changes in melanization and desiccation resistance may result from decreasing annual average temperature and relative humidity along increasing latitude as well as altitude on the Indian subcontinent.


Assuntos
Drosophila melanogaster/metabolismo , Melaninas/metabolismo , Estresse Fisiológico , Água/metabolismo , Animais , Ácido Ascórbico , Colecalciferol , Clima , Desidroepiandrosterona/análogos & derivados , Dessecação , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Ácidos Nicotínicos , Fenótipo , Extratos Vegetais , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA