Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Magn Reson Imaging ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418419

RESUMO

BACKGROUND: In breast diffusion-weighted imaging (DWI), distortion and physiologic artifacts affect clinical interpretation. Image quality can be optimized by addressing the effect of phase encoding (PE) direction on these artifacts. PURPOSE: To compare distortion artifacts in breast DWI acquired with different PE directions and polarities, and to discuss their clinical implications. STUDY TYPE: Prospective. POPULATION: Eleven healthy volunteers (median age: 47 years old; range: 22-74 years old) and a breast phantom. FIELD STRENGTH/SEQUENCE: Single-shot echo planar DWI and three-dimensional fast gradient echo sequences at 3 T. ASSESSMENT: All DWI data were acquired with left-right, right-left, posterior-anterior, and anterior-posterior PE directions. In phantom data, displacement magnitude was evaluated by comparing the location of landmarks in anatomical and DWI images. Three breast radiologists (5, 17, and 23 years of experience) assessed the presence or absence of physiologic artifacts in volunteers' DWI datasets and indicated their PE-direction preference. STATISTICAL TESTS: Analysis of variance with post-hoc tests were used to assess differences in displacement magnitude across DWI datasets and observers. A binomial test and a chi-squared test were used to evaluate if each in vivo DWI dataset had an equal probability (25%) of being preferred by radiologists. Inter-reader agreement was evaluated using Gwet's AC1 agreement coefficient. A P-value <0.05 was considered statistically significant. RESULTS: In the phantom study, median displacement was the significantly largest in posterior-anterior data. While the displacement in the anterior-posterior and left-right data were equivalent (P = 0.545). In the in vivo data, there were no physiological artifacts observed in any dataset, regardless of PE direction. In the reader study, there was a significant preference for the posterior-anterior datasets which were selected 94% of the time. There was good agreement between readers (0.936). DATA CONCLUSION: This study showed the impact of PE direction on distortion artifacts in breast DWI. In healthy volunteers, the posterior-to-anterior PE direction was preferred by readers. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

2.
J Magn Reson Imaging ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39291552

RESUMO

BACKGROUND: Breast cancer screening with dynamic contrast-enhanced MRI (DCE-MRI) is recommended for high-risk women but has limitations, including variable specificity and difficulty in distinguishing cancerous (CL) and high-risk benign lesions (HRBL) from average-risk benign lesions (ARBL). Complementary non-invasive imaging techniques would be useful to improve specificity. PURPOSE: To evaluate the performance of a previously-developed breast-specific diffusion-weighted MRI (DW-MRI) model (BS-RSI3C) to improve discrimination between CL, HRBL, and ARBL in an enriched screening population. STUDY TYPE: Prospective. SUBJECTS: Exactly 187 women, either with mammography screening recommending additional imaging (N = 49) or high-risk individuals undergoing routine breast MRI (N = 138), before the biopsy. FIELD STRENGTH/SEQUENCE: Multishell DW-MRI echo planar imaging sequence with a reduced field of view at 3.0 T. ASSESSMENT: A total of 72 women had at least one biopsied lesion, with 89 lesions categorized into ARBL, HRBL, CL, and combined CLs and HRBLs (CHRLs). DW-MRI data were processed to produce apparent diffusion coefficient (ADC) maps, and estimate signal contributions (C1, C2, and C3-restricted, hindered, and free diffusion, respectively) from the BS-RSI3C model. Lesion regions of interest (ROIs) were delineated on DW images based on suspicious DCE-MRI findings by two radiologists; control ROIs were drawn in the contralateral breast. STATISTICAL TESTS: One-way ANOVA and two-sided t-tests were used to assess differences in signal contributions and ADC values among groups. P-values were adjusted using the Bonferroni method for multiple testing, P = 0.05 was used for the significance level. Receiver operating characteristics (ROC) curves and intra-class correlations (ICC) were also evaluated. RESULTS: C1, √C1C2, and log C 1 C 2 C 3 $$ \log \left(\frac{{\mathrm{C}}_1{\mathrm{C}}_2}{{\mathrm{C}}_3}\right) $$ were significantly different in HRBLs compared with ARBLs (P-values < 0.05). The log C 1 C 2 C 3 $$ \log \left(\frac{{\mathrm{C}}_1{\mathrm{C}}_2}{{\mathrm{C}}_3}\right) $$ had the highest AUC (0.821) in differentiating CHRLs from ARBLs, performing better than ADC (0.696), especially in non-mass enhancement (0.776 vs. 0.517). DATA CONCLUSION: This study demonstrated the BS-RSI3C could differentiate HRBLs from ARBLs in a screening population, and separate CHRLs from ARBLs better than ADC. TECHNICAL EFFICACY STAGE: 2.

3.
AJR Am J Roentgenol ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356481

RESUMO

Prostate MRI has traditionally relied on qualitative interpretation. However, quantitative components hold the potential to markedly improve performance. The ADC from DWI is probably the most widely recognized quantitative MRI biomarker and has shown strong discriminatory value for clinically significant prostate cancer (csPCa) as well as for recurrent cancer after treatment. Advanced diffusion techniques, including intravoxel incoherent motion, diffusion kurtosis, diffusion tensor imaging, and specific implementations such as restriction spectrum imaging, purport even better discrimination, but are more technically challenging. The inherent T1 and T2 of tissue also provide diagnostic value, with more advanced techniques deriving luminal water imaging and hybrid-multidimensional MRI. Dynamic contrast-enhanced imaging, primarily using a modified Tofts model, also shows independent discriminatory value. Finally, quantitative size and shape features can be combined with the aforementioned techniques and be further refined using radiomics, texture analysis, and artificial intelligence. Which technique will ultimately find widespread clinical use will depend on validation across a myriad of platforms use-cases.

4.
J Appl Clin Med Phys ; : e14514, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39374162

RESUMO

PURPOSE: The purpose of the present study is to develop a calibration method to account for differences in echo times (TE) and facilitate the use of restriction spectrum imaging restriction score (RSIrs) as a quantitative biomarker for the detection of clinically significant prostate cancer (csPCa). METHODS: This study included 197 consecutive patients who underwent MRI and biopsy examination; 97 were diagnosed with csPCa (grade group ≥ 2). RSI data were acquired three times during the same session: twice at minimum TE ~75 ms and once at TE = 90 ms (TEmin1, TEmin2, and TE90, respectively). A linear regression model was determined to match the C-maps of TE90 to the reference C-maps of TEmin1 within the interval ranging from 95th to 99th percentile of signal intensity within the prostate. RSIrs comparisons were made at the 98th percentile within each patient's prostate. We compared RSIrs from calibrated TE90 (RSIrsTE90corr) and uncorrected TE90 (RSIrsTE90) to RSIrs from reference TEmin1 (RSIrsTEmin1) and repeated TEmin2 (RSIrsTEmin2). Calibration performance was evaluated with sensitivity, specificity and area under the ROC curve (AUC). RESULTS: Scaling factors for C1, C2, C3, and C4 were estimated as 1.68, 1.33, 1.02, and 1.13, respectively. In non-csPCa cases, the 98th percentile of RSIrsTEmin2 and RSIrsTEmin1 differed by 0.27 ± 0.86SI (mean ± standard deviation), whereas RSIrsTE90 differed from RSIrsTEmin1 by 1.82 ± 1.20SI. After calibration, this bias was reduced to -0.51 ± 1.21SI, representing a 72% reduction in absolute error. For patients with csPCa, the difference was 0.54 ± 1.98SI between RSIrsTEmin2 and RSIrsTEmin1 and 2.28 ± 2.06SI between RSIrsTE90 and RSIrsTEmin1. After calibration, the mean difference decreased to -1.03SI, a 55% reduction in absolute error. At the Youden index for patient-level classification of csPCa (8.94SI), RSIrsTEmin1 has a sensitivity of 66% and a specificity of 72%. CONCLUSIONS: The proposed linear calibration method produces similar quantitative biomarker values for acquisitions with different TE, reducing TE-induced error by 72% and 55% for non-csPCa and csPCa, respectively.

5.
J Magn Reson Imaging ; 57(3): 812-823, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36029225

RESUMO

BACKGROUND: To date, the accuracy and variability of diffusion-weighted MRI (DW-MRI) metrics have been reported in a limited number of scanner/protocol/coil combinations. PURPOSE: To evaluate the reproducibility of DW-MRI estimates across multiple scanners and DW-MRI protocols and to assess the effects of using an 8-channel vs. 16-channel breast coil in a breast phantom. STUDY TYPE: Prospective. PHANTOM: Breast phantom containing tubes of water and differing polyvinylpyrrolidone (PVP) concentrations with apparent diffusion coefficients (ADCs) matching breast tissue. FIELD STRENGTH/SEQUENCE: 3 T (three standard and one wide bore), three DW-MRI single-shot echo planar imaging protocols of varying acquired spatial resolution. ASSESSMENT: Accuracy of estimated ADCs was assessed using percent differences (PD) relative to nuclear magnetic resonance spectroscopy-derived reference values. Coefficients of variation (CV) were calculated to determine variation across scanners. CVs based on the median standard deviation (CVM ) were used to evaluate tube-specific dispersion using 8- or 16-channel coils at a single scanner. ADCs of PVP-containing tubes were additionally normalized by the median water tube ADC to account for temperature effects. STATISTICAL TESTS: Two-way repeated measures analysis of variance and post hoc tests were used to evaluate differences in ADC, CV, and CVM across scanners and protocols (α = 0.05). RESULTS: ADCs were within 11% (interquartile range [IQR] 7%) of reference values and significantly improved to 2% (IQR 7%) after normalization to an internal water reference. Normalization significantly reduced interscanner variability of ADC estimates from 7% to 4%. DW-MRI protocol did not affect ADC accuracy; however, the clinical and higher-resolution clinical protocols resulted in the greatest (9%) and least (6%) interscanner variability, respectively. The 8- and 16-channel receive coils yielded similar accuracy (PD: 12% vs. 16%) and precision (CVM : 2.7% vs. 2.9%). DATA CONCLUSION: Normalization by an internal reference improved interscanner ADC reproducibility. High-resolution protocols yielded comparably accurate and significantly less variable ADCs compared to a clinical standard protocol. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.


Assuntos
Mama , Imagem de Difusão por Ressonância Magnética , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Estudos Prospectivos , Mama/diagnóstico por imagem , Imagens de Fantasmas
6.
Magn Reson Med ; 87(4): 1938-1951, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904726

RESUMO

PURPOSE: Restriction spectrum imaging (RSI) decomposes the diffusion-weighted MRI signal into separate components of known apparent diffusion coefficients (ADCs). The number of diffusion components and optimal ADCs for RSI are organ-specific and determined empirically. The purpose of this work was to determine the RSI model for breast tissues. METHODS: The diffusion-weighted MRI signal was described using a linear combination of multiple exponential components. A set of ADC values was estimated to fit voxels in cancer and control ROIs. Later, the signal contributions of each diffusion component were estimated using these fixed ADC values. Relative-fitting residuals and Bayesian information criterion were assessed. Contrast-to-noise ratio between cancer and fibroglandular tissue in RSI-derived signal contribution maps was compared to DCE imaging. RESULTS: A total of 74 women with breast cancer were scanned at 3.0 Tesla MRI. The fitting residuals of conventional ADC and Bayesian information criterion suggest that a 3-component model improves the characterization of the diffusion signal over a biexponential model. Estimated ADCs of triexponential model were D1,3 = 0, D2,3 = 1.5 × 10-3 , and D3,3 = 10.8 × 10-3 mm2 /s. The RSI-derived signal contributions of the slower diffusion components were larger in tumors than in fibroglandular tissues. Further, the contrast-to-noise and specificity at 80% sensitivity of DCE and a subset of RSI-derived maps were equivalent. CONCLUSION: Breast diffusion-weighted MRI signal was best described using a triexponential model. Tumor conspicuity in breast RSI model is comparable to that of DCE without the use of exogenous contrast. These data may be used as differential features between healthy and malignant breast tissues.


Assuntos
Neoplasias da Mama , Imagem de Difusão por Ressonância Magnética , Teorema de Bayes , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Meios de Contraste , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade
7.
J Magn Reson Imaging ; 54(3): 975-984, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33786915

RESUMO

BACKGROUND: Diffusion magnetic resonance imaging (MRI) is integral to detection of prostate cancer (PCa), but conventional apparent diffusion coefficient (ADC) cannot capture the complexity of prostate tissues and tends to yield noisy images that do not distinctly highlight cancer. A four-compartment restriction spectrum imaging (RSI4 ) model was recently found to optimally characterize pelvic diffusion signals, and the model coefficient for the slowest diffusion compartment, RSI4 -C1 , yielded greatest tumor conspicuity. PURPOSE: To evaluate the slowest diffusion compartment of a four-compartment spectrum imaging model (RSI4 -C1 ) as a quantitative voxel-level classifier of PCa. STUDY TYPE: Retrospective. SUBJECTS: Forty-six men who underwent an extended MRI acquisition protocol for suspected PCa. Twenty-three men had benign prostates, and the other 23 men had PCa. FIELD STRENGTH/SEQUENCE: A 3 T, multishell diffusion-weighted and axial T2-weighted sequences. ASSESSMENT: High-confidence cancer voxels were delineated by expert consensus, using imaging data and biopsy results. The entire prostate was considered benign in patients with no detectable cancer. Diffusion images were used to calculate RSI4 -C1 and conventional ADC. Classifier images were also generated. STATISTICAL TESTS: Voxel-level discrimination of PCa from benign prostate tissue was assessed via receiver operating characteristic (ROC) curves generated by bootstrapping with patient-level case resampling. RSI4 -C1 was compared to conventional ADC for two metrics: area under the ROC curve (AUC) and false-positive rate for a sensitivity of 90% (FPR90 ). Statistical significance was assessed using bootstrap difference with two-sided α = 0.05. RESULTS: RSI4 -C1 outperformed conventional ADC, with greater AUC (mean 0.977 [95% CI: 0.951-0.991] vs. 0.922 [0.878-0.948]) and lower FPR90 (0.032 [0.009-0.082] vs. 0.201 [0.132-0.290]). These improvements were statistically significant (P < 0.05). DATA CONCLUSION: RSI4 -C1 yielded a quantitative, voxel-level classifier of PCa that was superior to conventional ADC. RSI classifier images with a low false-positive rate might improve PCa detection and facilitate clinical applications like targeted biopsy and treatment planning. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias da Próstata , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Curva ROC , Estudos Retrospectivos
8.
J Magn Reson Imaging ; 53(2): 628-639, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131186

RESUMO

BACKGROUND: Multicompartmental modeling outperforms conventional diffusion-weighted imaging (DWI) in the assessment of prostate cancer. Optimized multicompartmental models could further improve the detection and characterization of prostate cancer. PURPOSE: To optimize multicompartmental signal models and apply them to study diffusion in normal and cancerous prostate tissue in vivo. STUDY TYPE: Retrospective. SUBJECTS: Forty-six patients who underwent MRI examination for suspected prostate cancer; 23 had prostate cancer and 23 had no detectable cancer. FIELD STRENGTH/SEQUENCE: 3T multishell diffusion-weighted sequence. ASSESSMENT: Multicompartmental models with 2-5 tissue compartments were fit to DWI data from the prostate to determine optimal compartmental apparent diffusion coefficients (ADCs). These ADCs were used to compute signal contributions from the different compartments. The Bayesian Information Criterion (BIC) and model-fitting residuals were calculated to quantify model complexity and goodness-of-fit. Tumor contrast-to-noise ratio (CNR) and tumor-to-background signal intensity ratio (SIR) were computed for conventional DWI and multicompartmental signal-contribution maps. STATISTICAL TESTS: Analysis of variance (ANOVA) and two-sample t-tests (α = 0.05) were used to compare fitting residuals between prostate regions and between multicompartmental models. T-tests (α = 0.05) were also used to assess differences in compartmental signal-fraction between tissue types and CNR/SIR between conventional DWI and multicompartmental models. RESULTS: The lowest BIC was observed from the 4-compartment model, with optimal ADCs of 5.2e-4, 1.9e-3, 3.0e-3, and >3.0e-2 mm2 /sec. Fitting residuals from multicompartmental models were significantly lower than from conventional ADC mapping (P < 0.05). Residuals were lowest in the peripheral zone and highest in tumors. Tumor tissue showed the largest reduction in fitting residual by increasing model order. Tumors had a greater proportion of signal from compartment 1 than normal tissue (P < 0.05). Tumor CNR and SIR were greater on compartment-1 signal maps than conventional DWI (P < 0.05) and increased with model order. DATA CONCLUSION: The 4-compartment signal model best described diffusion in the prostate. Compartmental signal contributions revealed by this model may improve assessment of prostate cancer. Level of Evidence 3 Technical Efficacy Stage 3 J. MAGN. RESON. IMAGING 2021;53:628-639.


Assuntos
Neoplasias da Próstata , Teorema de Bayes , Imagem de Difusão por Ressonância Magnética , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Retrospectivos
9.
J Magn Reson Imaging ; 53(5): 1581-1591, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33644939

RESUMO

BACKGROUND: Diffusion-weighted (DW) echo-planar imaging (EPI) is prone to geometric distortions due to B0 inhomogeneities. Both prospective and retrospective approaches have been developed to decrease and correct such distortions. PURPOSE: The purpose of this work was to evaluate the performance of reduced-field-of-view (FOV) acquisition and retrospective distortion correction methods in decreasing distortion artifacts for breast imaging. Coverage of the axilla in reduced-FOV DW magnetic resonance imaging (MRI) and residual distortion were also assessed. STUDY TYPE: Retrospective. POPULATION/PHANTOM: Breast phantom and 169 women (52.4 ± 13.4 years old) undergoing clinical breast MRI. FIELD STRENGTH/SEQUENCE: A 3.0 T/ full- and reduced-FOV DW gradient-echo EPI sequence. ASSESSMENT: Performance of reversed polarity gradient (RPG) and FSL topup in correcting breast full- and reduced-FOV EPI data was evaluated using the mutual information (MI) metric between EPI and anatomical images. Two independent breast radiologists determined if coverage on both EPI data sets was adequate to evaluate axillary nodes and identified residual nipple distortion artifacts. STATISTICAL TESTS: Two-way repeated-measures analyses of variance and post hoc tests were used to identify differences between EPI modality and distortion correction method. Generalized linear mixed effects models were used to evaluate differences in axillary coverage and residual nipple distortion. RESULTS: In a breast phantom, residual distortions were 0.16 ± 0.07 cm and 0.22 ± 0.13 cm in reduced- and full-FOV EPI with both methods, respectively. In patients, MI significantly increased after distortion correction of full-FOV (11 ± 5% and 18 ± 9%, RPG and topup) and reduced-FOV (8 ± 4% both) EPI data. Axillary nodes were observed in 99% and 69% of the cases in full- and reduced-FOV EPI images. Residual distortion was observed in 93% and 0% of the cases in full- and reduced-FOV images. DATA CONCLUSION: Minimal distortion was achieved with RPG applied to reduced-FOV EPI data. RPG improved distortions for full-FOV images but with more modest improvements and limited correction near the nipple. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.


Assuntos
Artefatos , Imagem Ecoplanar , Adulto , Idoso , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos
10.
AJR Am J Roentgenol ; 216(4): 860-873, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33295802

RESUMO

BI-RADS is a communication and data tracking system that has evolved since its inception as a brief mammography lexicon and reporting guide into a robust structured reporting platform and comprehensive quality assurance tool for mammography, ultrasound, and MRI. Consistent and appropriate use of the BI-RADS lexicon terminology and assessment categories effectively communicates findings, estimates the risk of malignancy, and provides management recommendations to patients and referring clinicians. The impact of BI-RADS currently extends internationally through six language translations. A condensed version has been proposed to facilitate a phased implementation of BI-RADS in resource-constrained regions. The primary advance of the 5th edition of BI-RADS is harmonization of the lexicon terms across mammography, ultrasound, and MRI. Harmonization has also been achieved across these modalities for the reporting structure, assessment categories, management recommendations, and data tracking system. Areas for improvement relate to certain common findings that lack lexicon descriptors and a need for further clarification of proper use of category 3. BI-RADS is anticipated to continue to evolve for application to a range of emerging breast imaging modalities.


Assuntos
Mama/diagnóstico por imagem , Mamografia , Imagem Multimodal , Neoplasias da Mama/diagnóstico por imagem , Feminino , Previsões , Gestão da Informação em Saúde/métodos , Gestão da Informação em Saúde/tendências , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/tendências , Mamografia/métodos , Mamografia/normas , Mamografia/tendências , Imagem Multimodal/métodos , Imagem Multimodal/tendências , Ultrassonografia Mamária/métodos , Ultrassonografia Mamária/tendências
11.
Magn Reson Med ; 84(2): 1011-1023, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31975448

RESUMO

PURPOSE: To evaluate different non-Gaussian representations for the diffusion-weighted imaging (DWI) signal in the b-value range 200 to 3000 s/mm2 in benign and malignant breast lesions. METHODS: Forty-three patients diagnosed with benign (n = 18) or malignant (n = 25) tumors of the breast underwent DWI (b-values 200, 600, 1200, 1800, 2400, and 3000 s/mm2 ). Six different representations were fit to the average signal from regions of interest (ROIs) at different b-value ranges. Quality of fit was assessed by the corrected Akaike information criterion (AICc), and the Friedman test was used for assessing representation ranks. The area under the curve (AUC) of receiver operating characteristic curves were used to evaluate the power of derived parameters to differentiate between malignant and benign lesions. The lesion ROI was divided in central and peripheral parts to assess potential effect of heterogeneity. Sensitivity to noise-floor correction was also evaluated. RESULTS: The Padé exponent was ranked as the best based on AICc, whereas 3 models (kurtosis, fractional, and biexponential) achieved the highest AUC = 0.99 for lesion differentiation. The monoexponential model at bmax = 600 s/mm2 already provides AUC = 0.96, with considerably shorter acquisition time and simpler analysis. Significant differences between central and peripheral parts of lesions were found in malignant lesions. The mono- and biexponential models were most stable against varying degrees of noise-floor correction. CONCLUSION: Non-Gaussian representations are required for fitting of the DWI curve at high b-values in breast lesions. However, the added clinical value from the high b-value data for differentiation of benign and malignant lesions is not clear.


Assuntos
Neoplasias da Mama , Imagem de Difusão por Ressonância Magnética , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Humanos , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
J Ultrasound Med ; 39(8): 1601-1614, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32118312

RESUMO

OBJECTIVES: To investigate prenatal imaging findings supporting a diagnosis of suspected septo-optic dysplasia (SOD) by fetal ultrasound (US), magnetic resonance imaging (MRI), or both. METHODS: A retrospective review identified 11 patients with SOD: 9 had a clinical diagnosis of SOD postnatally, and 2 were terminated on the basis of suspicious prenatal imaging. Prenatal and neonatal imaging of the cavum septi pellucidi (CSP), frontal horns (FHs), and lateral ventricles was evaluated. RESULTS: The appearance of the CSP varied on US and MRI. Complete ("fused") FHs or partial absence of the CSP was reported in 6 of 11 patients by fetal US and 7 of 8 patients by fetal MRI. The diagnosis of SOD was prospectively suspected prenatally in 6 of 11 and in an additional 5 of 11 cases retrospectively. Fetal MRI incorrectly initially reported normal morphologic abnormalities for 2 cases with partial absence of the CSP, whereas US accurately identified the morphologic abnormalities in 1 of these cases before MRI. Imaging features were first suggested at anatomic US (4 patients) and follow-up prenatal US (2 patients). Neonatal imaging was concordant in all 9 live births: 5 completely absent CSP, 3 partially absent CSP, and 1 completely present CSP. Clinical manifestations included optic nerve hypoplasia (9 of 9), panhypopituitarism (5 of 9), and neurodevelopmental delays. CONCLUSIONS: Primary imaging features of SOD are "continuous" FHs with complete or partial absence of the CSP. Septo-optic dysplasia can be suspected in utero and can appear isolated but has substantial associated central nervous system anomalies identified on fetal MRI or after birth. Partial absence of the CSP can be a prenatal sign of suspected SOD, although fetal MRI lacked the spatial resolution to identify it accurately in all cases.


Assuntos
Displasia Septo-Óptica , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Gravidez , Estudos Retrospectivos , Displasia Septo-Óptica/diagnóstico por imagem , Septo Pelúcido/diagnóstico por imagem , Ultrassonografia Pré-Natal
13.
J Ultrasound Med ; 39(12): 2389-2403, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32597533

RESUMO

OBJECTIVES: We hypothesized that: (1) fetal frontal horn (FH) morphology and their proximity to the cavum septi pellucidi (CSP) can assist in suspecting complete agenesis of the corpus callosum (cACC) and partial agenesis of the corpus callosum (pACC) earlier than known indirect ultrasound (US) findings; (2) FHs assist in differentiating a true CSP from a pseudocavum; and (3) magnetic resonance imaging (MRI) is useful in learning FH morphology and pseudocavum etiology. METHODS: Thirty-two patients with cACC and 9 with pACC were identified on an Institutional Review Board-approved retrospective review. Of the 41 cases, 40 had prenatal US, and 21 had prenatal MRI; 17 had follow-up neonatal US, and 14 had follow-up neonatal MRI. Variables evaluated retrospectively were the presence of a CSP or a pseudocavum, ventricle size and shape, and FH shape (comma, trident, parallel, golf club, enlarged, or fused). Displacement between the inferior edge of the FH and the midline or cavum/pseudocavum was measured. RESULTS: Fetal FHs had an abnormal shape in 77% ≤20 weeks' gestation, 86% ≤24 weeks, and 90% >24 weeks. Frontal horns were laterally displaced greater than 2 mm in 85% ≤20 weeks, 91% ≤24 weeks, and 95% >24 weeks. The CSP was absent in 100% of cACC cases and 78% of pACC cases, and a pseudocavum was present in 88% of cACC cases and 78% of pACC cases across gestation. Magnetic resonance imaging confirmed US pseudocavums to be focal interhemispheric fluid or an elevated/dilated third ventricle. CONCLUSIONS: Frontal horns assist in assessing ACC ≤24 weeks and throughout gestation. Pseudocavums, often simulating CSPs, are common in ACC. Frontal horn lateral displacement and abnormal morphology, recognized by MRI correlations, are helpful in differentiating a pseudocavum from a true CSP. A normal CSP should not be cleared on screening US unless normally shaped FHs are seen directly adjacent to it.


Assuntos
Corpo Caloso , Ultrassonografia Pré-Natal , Agenesia do Corpo Caloso/diagnóstico por imagem , Feminino , Feto , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Gravidez , Estudos Retrospectivos , Septo Pelúcido/diagnóstico por imagem
15.
Acta Radiol ; 59(12): 1523-1529, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29665707

RESUMO

BACKGROUND: High b-value diffusion-weighted imaging has application in the detection of cancerous tissue across multiple body sites. Diffusional kurtosis and bi-exponential modeling are two popular model-based techniques, whose performance in relation to each other has yet to be fully explored. PURPOSE: To determine the relationship between excess kurtosis and signal fractions derived from bi-exponential modeling in the detection of suspicious prostate lesions. MATERIAL AND METHODS: This retrospective study analyzed patients with normal prostate tissue (n = 12) or suspicious lesions (n = 13, one lesion per patient), as determined by a radiologist whose clinical care included a high b-value diffusion series. The observed signal intensity was modeled using a bi-exponential decay, from which the signal fraction of the slow-moving component was derived ( SFs). In addition, the excess kurtosis was calculated using the signal fractions and ADCs of the two exponentials ( KCOMP). As a comparison, the kurtosis was also calculated using the cumulant expansion for the diffusion signal ( KCE). RESULTS: Both K and KCE were found to increase with SFs within the range of SFs commonly found within the prostate. Voxel-wise receiver operating characteristic performance of SFs, KCE, and KCOMP in discriminating between suspicious lesions and normal prostate tissue was 0.86 (95% confidence interval [CI] = 0.85 - 0.87), 0.69 (95% CI = 0.68-0.70), and 0.86 (95% CI = 0.86-0.87), respectively. CONCLUSION: In a two-component diffusion environment, KCOMP is a scaled value of SFs and is thus able to discriminate suspicious lesions with equal precision . KCE provides a computationally inexpensive approximation of kurtosis but does not provide the same discriminatory abilities as SFs and KCOMP.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes , Estudos Retrospectivos
16.
J Magn Reson Imaging ; 45(2): 323-336, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27527500

RESUMO

Restriction spectrum imaging (RSI) is a novel diffusion-weighted MRI technique that uses the mathematically distinct behavior of water diffusion in separable microscopic tissue compartments to highlight key aspects of the tissue microarchitecture with high conspicuity. RSI can be acquired in less than 5 min on modern scanners using a surface coil. Multiple field gradients and high b-values in combination with postprocessing techniques allow the simultaneous resolution of length-scale and geometric information, as well as compartmental and nuclear volume fraction filtering. RSI also uses a distortion correction technique and can thus be fused to high resolution T2-weighted images for detailed localization, which improves delineation of disease extension into critical anatomic structures. In this review, we discuss the acquisition, postprocessing, and interpretation of RSI for prostate MRI. We also summarize existing data demonstrating the applicability of RSI for prostate cancer detection, in vivo characterization, localization, and targeting. LEVEL OF EVIDENCE: 5 J. Magn. Reson. Imaging 2017;45:323-336.


Assuntos
Água Corporal/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Medicina Baseada em Evidências , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador
18.
Diagnostics (Basel) ; 14(16)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39202225

RESUMO

The diagnosis of a common cause of chronic pelvic pain can be made by visualizing reflux in the ovarian veins. Fluoroscopic venography is the gold standard for diagnosing ovarian vein reflux, but it is an invasive technique that exposes patients to ionizing radiation. MRI, with its lack of ionizing radiation and capability of high-temporal and spatial-resolution vascular imaging, has the potential to provide similar diagnostic information. This retrospective report describes and assesses the utility of a dynamic contrast-enhanced MRI technique based on Differential Subsampling with Cartesian Ordering (DISCO)-MRI in 30 patients with chronic pelvic pain. Among the 14 patients who underwent both DISCO-MRI and fluoroscopic venograms, 11 (78.6%) exhibited concordant results, while 3 patients (21.4%) had discordant findings. These results suggest the potential of multiphasic contrast-enhanced DISCO-MRI as a non-invasive diagnostic tool for evaluating chronic pelvic pain.

19.
Magn Reson Imaging ; 113: 110222, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39181479

RESUMO

PURPOSE: MRI is commonly used to aid breast cancer diagnosis and treatment evaluation. For patients with breast cancer, neoadjuvant chemotherapy aims to reduce the tumor size and extent of surgery necessary. The current clinical standard to measure breast tumor response on MRI uses the longest tumor diameter. Radiologists also account for other tissue properties including tumor contrast or pharmacokinetics in their assessment. Accurate longitudinal image registration of breast tissue is critical to properly compare response to treatment at different timepoints. METHODS: In this study, a deformable Fast Longitudinal Image Registration (FLIRE) algorithm was optimized for breast tissue. FLIRE was then compared to the publicly available software packages with high accuracy (DRAMMS) and fast runtime (Elastix). Patients included in the study received longitudinal T1-weighted MRI without fat saturation at two to six timepoints as part of asymptomatic screening (n = 27) or throughout neoadjuvant chemotherapy treatment (n = 32). T1-weighted images were registered to the first timepoint with each algorithm. RESULTS: Alignment and runtime performance were compared using two-way repeated measure ANOVAs (P < 0.05). Across all patients, Pearson's correlation coefficient across the entire image volume was slightly higher with statistical significance and had less variance for FLIRE (0.98 ± 0.01 stdev) compared to DRAMMS (0.97 ± 0.03 stdev) and Elastix (0.95 ± 0.03 stdev). Additionally, FLIRE runtime (10.0 mins) was 9.0 times faster than DRAMMS (89.6 mins) and 1.5 times faster than Elastix (14.5 mins) on a Linux workstation. CONCLUSION: FLIRE demonstrates promise for time-sensitive clinical applications due to its accuracy, robustness across patients and timepoints, and speed.


Assuntos
Algoritmos , Neoplasias da Mama , Mama , Imageamento por Ressonância Magnética , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Feminino , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Longitudinais , Terapia Neoadjuvante , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Adulto , Processamento de Imagem Assistida por Computador/métodos , Idoso , Software
20.
Cancer Imaging ; 24(1): 89, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972972

RESUMO

BACKGROUND: High b-value diffusion-weighted images (DWI) are used for detection of clinically significant prostate cancer (csPCa). This study qualitatively and quantitatively compares synthesized DWI (sDWI) to acquired (aDWI) for detection of csPCa. METHODS: One hundred fifty-one consecutive patients who underwent prostate MRI and biopsy were included in the study. Axial DWI with b = 0, 500, 1000, and 2000 s/mm2 using a 3T clinical scanner using a 32-channel phased-array body coil were acquired. We retrospectively synthesized DWI for b = 2000 s/mm2 via extrapolation based on mono-exponential decay, using b = 0 and b = 500 s/mm2 (sDWI500) and b = 0, b = 500 s/mm2, and b = 1000 s/mm2 (sDWI1000). Differences in signal intensity between sDWI and aDWI were evaluated within different regions of interest (prostate alone, prostate plus 5 mm, 30 mm and 70 mm margin and full field of view). The maximum DWI value within each ROI was evaluated for prediction of csPCa. Classification accuracy was compared to Restriction Spectrum Imaging restriction score (RSIrs), a previously validated biomarker based on multi-exponential DWI. Discrimination of csPCa was evaluated via area under the receiver operating characteristic curve (AUC). RESULTS: Within the prostate, mean ± standard deviation of percent mean differences between sDWI and aDWI signal were -46 ± 35% for sDWI1000 and -67 ± 24% for sDWI500. AUC for aDWI, sDWI500, sDWI1000, and RSIrs within the prostate 0.62[95% confidence interval: 0.53, 0.71], 0.63[0.54, 0.72], 0.65[0.56, 0.73] and 0.78[0.71, 0.86], respectively. CONCLUSION: sDWI is qualitatively comparable to aDWI within the prostate. However, hyperintense artifacts are introduced with sDWI in the surrounding pelvic tissue that interfere with quantitative cancer detection and might mask metastases. In the prostate, RSIrs yields superior quantitative csPCa detection than sDWI or aDWI.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Idoso , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Próstata/diagnóstico por imagem , Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA