Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Cell Res ; 362(1): 132-141, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29129565

RESUMO

The calcineurin-NFAT signaling pathway regulates cell proliferation, differentiation, and development in diverse cell types and organ systems. Deregulation of calcineurin-NFAT signaling has been reported in leukaemias and few solid tumors such as breast and colon. In the present study, we found elevated calcineurin protein levels and phosphatase activity in cervical cancer cell lines and depletion of the same attenuated cell proliferation. Additionally, nuclear levels of NFAT2, a downstream target of calcineurin, viz, was found elevated in human papillomavirus (HPV) infected cells, HeLa and SiHa, compared to the HPV negative cells, HaCaT and C33A, indicative of its higher DNA binding activity. The nuclear levels of both NFAT1 and NFAT3 remain unaltered implicating they have little role in cervical carcinogenesis. Similar to the in vitro studies, the HPV infected human squamous cell carcinoma specimens showed higher NFAT2 levels compared to the normal cervical epithelium. Depletion of NFAT2 by RNAi attenuated growth of SiHa cells. Overexpression of HPV16 oncoproteins viz, E6 and E7 increased NFAT2 expression levels and DNA binding activity, while knockdown of E6 by RNAi decreased the same. Briefly, we now report an activation of calcineurin-NFAT2 axis in cervical cancer and a novel role of HPV oncoprotein in facilitating NFAT2 dependent cell proliferation.


Assuntos
Calcineurina/metabolismo , Carcinoma/metabolismo , Proliferação de Células/fisiologia , Fatores de Transcrição NFATC/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/metabolismo , Carcinogênese/metabolismo , Carcinoma/virologia , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Colo do Útero/metabolismo , Colo do Útero/virologia , Proteínas de Ligação a DNA/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Interferência de RNA/fisiologia , Transdução de Sinais/fisiologia , Neoplasias do Colo do Útero/virologia
2.
Biochim Biophys Acta ; 1843(11): 2497-512, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25003316

RESUMO

Cyclosporine A (CsA), a widely used immunosuppressant shows cytotoxic effects by either inducing apoptosis or redirecting the cell towards non-apoptotic cell death. However, there still remains a lacuna in understanding the mechanism of CsA induced non-apoptotic cell death. In the present study we investigated calcineurin dependent or independent cytotoxic effects of CsA, a calcineurin inhibitor, in cervical cancerous SiHa cells. Decreased cell viability and massive cytoplasmic vacuolations were observed in CsA treated SiHa cells, having increased calcineurin activity. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR), accompanied by a decrease in cyclophilin B (ER resident PPIase), preceded the formation of the vacuoles. These vacuoles stained positive for many ER resident markers confirming their ER origin; but the absence of autophagosomal marker, LC3II, ruled out autophagy. Extensively vacuolated cells eventually undergo cell death which lacked the typical apoptotic features, but showed significant decrease in AIP (ALG2 interacting protein) as seen in paraptosis. ER-vacuolation was prevented by cycloheximide and salubrinal thereby indicating requirement of active protein synthesis. Inhibiting calcineurin activity by either Tacrolimus (FK506) or by knockdown of calcineurin B subunit did not result in either ER-stress or cellular vacuolation. However, knockdown of cyclophilin B by siRNA resulted in increased expression of Bip and IRE1α, together with cytoplasmic vacuolation. In conclusion, we report that persistent ER stress due to cyclophilin B inhibition in CsA treated cervical cancer cells caused cellular vacuolation which culminated in a non-apoptotic cell death response similar to paraptosis. Additionally, the paraptotic effects of CsA are independent of calcineurin inhibition.

3.
STAR Protoc ; 4(4): 102692, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37917578

RESUMO

Transcription factors (TFs) play a pivotal role in gene expression, and their DNA binding is the prerequisite to instigating gene transcription. Here, we present a protocol that exploits the proximity ligation assay technique to measure the DNA-binding activities of TFs in situ at the single-cell resolution. We describe steps for immunostaining with specific antibodies against double-stranded DNA and the TFs of interest, probe incubation, proximity ligation, and signal amplification. We then detail procedures for imaging and image analysis. For complete details on the use and execution of this protocol, please refer to Dai et al. (2015)1 and Xu et al. (2023).2.


Assuntos
Anticorpos , Fatores de Transcrição , Fatores de Transcrição/genética , Processamento de Imagem Assistida por Computador , Células Cultivadas
4.
Cell Rep ; 42(6): 112557, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37224019

RESUMO

Despite its pivotal roles in biology, how the transcriptional activity of c-MYC is tuned quantitatively remains poorly defined. Here, we show that heat shock factor 1 (HSF1), the master transcriptional regulator of the heat shock response, acts as a prime modifier of the c-MYC-mediated transcription. HSF1 deficiency diminishes c-MYC DNA binding and dampens its transcriptional activity genome wide. Mechanistically, c-MYC, MAX, and HSF1 assemble into a transcription factor complex on genomic DNAs, and surprisingly, the DNA binding of HSF1 is dispensable. Instead, HSF1 physically recruits the histone acetyltransferase general control nonderepressible 5 (GCN5), promoting histone acetylation and augmenting c-MYC transcriptional activity. Thus, we find that HSF1 specifically potentiates the c-MYC-mediated transcription, discrete from its canonical role in countering proteotoxic stress. Importantly, this mechanism of action engenders two distinct c-MYC activation states, primary and advanced, which may be important to accommodate diverse physiological and pathological conditions.


Assuntos
Proteínas de Ligação a DNA , Resposta ao Choque Térmico , Fatores de Transcrição , DNA , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Linhagem Celular Tumoral
5.
Mech Ageing Dev ; 132(5): 230-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21515304

RESUMO

Stress induced premature senescence (SIPS) in mammalian cells is an accelerated ageing response and experimentally obtained on treatment of cells with high concentrations of H(2)O(2), albeit at sub-lethal doses, because H(2)O(2) gets depleted by abundant cellular catalase. In the present study diperoxovanadate (DPV) was used as it is known to be stable at physiological pH, to be catalase-resistant and to substitute for H(2)O(2) in its activities at concentrations order of magnitudes lower. On treating NIH3T3 cells with DPV, SIPS-like morphology was observed along with an immediate response of rounding of the cells by disruption of actin cytoskeleton and transient G2/M arrest. DPV could bring about growth arrest and senescence associated features at 25 µM dose, which were not seen with similar doses of either H(2)O(2) or vanadate. A minimal dose of 150 µM of H(2)O(2) was required to induce similar affects as 25 µM DPV. Increase in senescent associated markers such as p21, HMGA2 and PAI-1 was more prominent in DPV treated cells compared to similar dose of H(2)O(2). DPV-treated cells showed marked relocalization of Cyclin D1 from nucleus to cytoplasm. These results indicate that DPV, stable inorganic peroxide, is more efficient in inducing SIPS at lower concentrations compared to H(2)O(2).


Assuntos
Senescência Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Oxidantes/farmacologia , Peróxidos/farmacologia , Vanadatos/farmacologia , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Divisão Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Fase G2/efeitos dos fármacos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Camundongos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA