Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Lett ; 42(10): 2013-2033, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32676799

RESUMO

OBJECTIVE: Brassica juncea, a major oilseed crop, suffers substantial yield losses due to infestation by mustard aphids (Lipaphis erysimi). Unavailability of resistance genes within the accessible gene pool underpins significance of the transgenic strategy in developing aphid resistance. In this study, we aimed for the identification of an aphid-responsive promoter from B. juncea, based on the available genomic resources. RESULTS: A monosaccharide transporter gene, STP4 in B. juncea was activated by aphids and sustained increased expression as the aphids colonized the plants. We cloned the upstream intergenic region of STP4 and validated its stand-alone aphid-responsive promoter activity. Further, deletion analysis identified the putative cis-elements important for the aphid responsive promoter activity. CONCLUSION: The identified STP4 promoter can potentially be used for driving high level aphid-inducible expression of transgenes in plants. Use of aphid-responsive promoter instead of constitutive promoters can potentially reduce the metabolic burden of transgene-expression on the host plant.


Assuntos
Afídeos/patogenicidade , Proteínas de Transporte de Monossacarídeos/genética , Mostardeira , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Animais , Proteínas de Transporte de Monossacarídeos/metabolismo , Doenças das Plantas , Folhas de Planta/parasitologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
2.
Appl Microbiol Biotechnol ; 102(3): 1467-1482, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29177935

RESUMO

Novel genes from Bacillus thuringiensis (Bt) are required for effective deployment in agriculture, human health, and forestry. In an improvement over conventional PCR-based screening, next generation sequencing (NGS) has been used for identification of new genes of potential interest from Bt strains, but cost becomes a constraint when several isolates are to be sequenced. We demonstrate the potential of a DNA pooling strategy known as pool deconvolution to identify commercially important toxin genes from 36 native Bt isolates. This strategy is divided into three steps: (a) DNA pooling, (b) short read sequence assembly followed by gene mining, and (c) host isolate identification. With this approach, we have identified insecticidal protein (ip) genes including nine three-domain (3D) cry genes, three cyt-type genes, three mtx genes (mosquitocidal toxin), and one bin and vip-type gene each. Three cry-type and three cyt-type genes were cloned, out of which, two cry-type genes, ip11 and ip13, were named as cry4Ca2 and cry52Ca1, respectively by the Bacillus thuringiensis nomenclature committee ( http://www.biols.susx.ac.uk/Home/Neil_Crickmore/BT/ ). Our results show that the pool deconvolution approach is well suited for high-throughput gene mining in bacteria.


Assuntos
Bacillus thuringiensis/genética , DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala
3.
Sci Rep ; 13(1): 795, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646750

RESUMO

Raffinose family oligosaccharides (RFOs) are known to have important physiological functions in plants. However, the presence of RFOs in legumes causes flatulence, hence are considered antinutrients. To reduce the RFOs content to a desirable limit without compromising normal plant development and functioning, the identification of important regulatory genes associated with the biosynthetic pathway is a prerequisite. In the present study, through comparative RNA sequencing in contrasting genotypes for seed RFOs content at different seed maturity stages, differentially expressed genes (DEGs) associated with the pathway were identified. The DEGs exhibited spatio-temporal expression patterns with high RFOs variety showing early induction of RFOs biosynthetic genes and low RFOs variety showing a late expression at seed maturity. Selective and seed-specific differential expression of raffinose synthase genes (AhRS14 and AhRS6) suggested their regulatory role in RFOs accumulation in peanut seeds, thereby serving as promising targets in low RFOs peanut breeding programs. Despite stachyose being the major seed RFOs fraction, differential expression of raffinose synthase genes indicated the complex metabolic regulation of this pathway. The transcriptomic resource and the genes identified in this study could be studied further to develop low RFOs varieties, thus improving the overall nutritional quality of peanuts.


Assuntos
Arachis , Melhoramento Vegetal , Rafinose/metabolismo , Arachis/genética , Arachis/metabolismo , Oligossacarídeos/metabolismo , Sementes/metabolismo
4.
Gene ; 844: 146818, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35985412

RESUMO

Thaumatin-like protein (TLP) is the well-known sweetest protein which plays a crucial role in diverse developmental processes and different stress conditions in plants, fungi and animals. The TLP gene family is extensively studied in different plant species including crop plants. Watermelon (Citrullus lanatus) is an important cucurbit crop cultivated worldwide; however, the comprehensive information about the TLP gene family is not available in watermelon. In the present study, we identified the 29 TLP genes as gene family members in watermelon using various computational methods to understand its role in different developmental processes and stress conditions. ClaTLP gene family members were not uniformly distributed on 22 chromosomes. Phylogenetic analysis revealed that the ClaTLP gene family members were grouped into 10 sub-groups. Further, gene duplication analysis showed thirteen gene duplication events which included one tandem and twelve segmental duplications. Amino acid sequence alignment has shown that ClaTLP proteins shared 16 conserved cysteine residues in their THN domain. Furthermore, cis-acting regulatory elements analysis also displayed that ClaTLP gene family members contain diverse phytohormone, various defense, and stress-responsive elements in their promoter region. The expression profile of the ClaTLP gene family revealed the differential expression of gene family members in different tissues and abiotic stresses conditions. Moreover, the expression profile of ClaTLP genes was further validated by semi-quantitative reverse transcriptase PCR. Taken together, these results indicate that ClaTLP genes might play an important role in developmental processes and diverse stress conditions. Therefore, the outcome of this study brings forth the valuable information for further interpret the precise role of ClaTLP gene family members in watermelon.


Assuntos
Citrullus , Citrullus/genética , Citrullus/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
5.
Plants (Basel) ; 11(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36559588

RESUMO

Global warming is a serious threat to food security and severely affects plant growth, developmental processes, and, eventually, crop productivity. Respiratory metabolism plays a critical role in the adaptation of diverse stress in plants. Aconitase (ACO) is the main enzyme, which catalyzes the revocable isomerization of citrate to isocitrate in the Krebs cycle. The function of ACO gene family members has been extensively studied in model plants, for instance Arabidopsis. However, their role in plant developmental processes and various stress conditions largely remained unknown in other plant species. Thus, we identified 15 ACO genes in wheat to elucidate their function in plant developmental processes and different stress environments. The phylogenetic tree revealed that TaACO genes were classified into six groups. Further, gene structure analysis of TaACOs has shown a distinctive evolutionary path. Synteny analysis showed the 84 orthologous gene pairs in Brachypodium distachyon, Aegilops tauschii, Triticum dicoccoides, Oryza sativa, and Arabidopsis thaliana. Furthermore, Ka/Ks ratio revealed that most TaACO genes experienced strong purifying selection during evolution. Numerous cis-acting regulatory elements were detected in the TaACO promoters, which play a crucial role in plant development processes, phytohormone signaling, and are related to defense and stress. To understand the function of TaACO genes, the expression profiling of TaACO genes were investigated in different tissues, developmental stages, and stress conditions. The transcript per million values of TaACOs genes were retrieved from the Wheat Expression Browser Database. We noticed the differential expression of the TaACO genes in different tissues and various stress conditions. Moreover, gene ontology analysis has shown enrichment in the tricarboxylic acid metabolic process (GO:0072350), citrate metabolic process (GO:0006101), isocitrate metabolic process GO:0006102, carbohydrate metabolic (GO:0005975), and glyoxylate metabolic process (GO:0046487). Therefore, this study provided valuable insight into the ACO gene family in wheat and contributed to the further functional characterization of TaACO during different plant development processes and various stress conditions.

6.
Plants (Basel) ; 11(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214830

RESUMO

Proline-rich extensin-like receptor kinases (PERKs) are a class of receptor kinases implicated in multiple cellular processes in plants. However, there is a lack of information on the PERK gene family in wheat. Therefore, we identified 37 PERK genes in wheat to understand their role in various developmental processes and stress conditions. Phylogenetic analysis of PERK genes from Arabidopsis thaliana, Oryza sativa, Glycine max, and T. aestivum grouped them into eight well-defined classes. Furthermore, synteny analysis revealed 275 orthologous gene pairs in B. distachyon, Ae. tauschii, T. dicoccoides, O. sativa and A. thaliana. Ka/Ks values showed that most TaPERK genes, except TaPERK1, TaPERK2, TaPERK17, and TaPERK26, underwent strong purifying selection during evolutionary processes. Several cis-acting regulatory elements, essential for plant growth and development and the response to light, phytohormones, and diverse biotic and abiotic stresses, were predicted in the promoter regions of TaPERK genes. In addition, the expression profile of the TaPERK gene family revealed differential expression of TaPERK genes in various tissues and developmental stages. Furthermore, TaPERK gene expression was induced by various biotic and abiotic stresses. The RT-qPCR analysis also revealed similar results with slight variation. Therefore, this study's outcome provides valuable information for elucidating the precise functions of TaPERK in developmental processes and diverse stress conditions in wheat.

7.
Plants (Basel) ; 12(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36616215

RESUMO

The tomato is one of the most important vegetables in the world. The demand for tomatoes is high in virtually any country, owing to their gastronomic versatility and nutritional and aromatic value. Drought, salinity, and inadequate temperature can be major factors in diminishing yield, affecting physiological and biochemical processes and altering various metabolic pathways, from the aggregation of low molecular-weight substances to the transcription of specific genes. Various biotechnological tools can be used to alter the tomato genes so that this species can more rapidly or better adapt to abiotic stress. These approaches range from the introgression of genes coding for specific enzymes for mitigating a prevailing stress to genetic modifications that alter specific metabolic pathways to help tomato perceive environmental cues and/or withstand adverse conditions. In recent years, environmental and social concerns and the high complexity of the plant response may increase the attention of applied plant biotechnology toward biomimetic strategies, generally defined as all the approaches that seek to develop more sustainable and acceptable strategies by imitating nature's time-tested solutions. In this review, we provide an overview of some of the genetic sequences and molecules that were the objects of biotechnological intervention in tomato as examples of approaches to achieve tolerance to abiotic factors, improving existing nature-based mechanisms and solutions (biomimetic biotechnological approaches (BBA)). Finally, we discuss implications and perspectives within the GMO debate, proposing that crops modified with BBA should receive less stringent regulation.

8.
Plants (Basel) ; 10(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204128

RESUMO

Calligonum polygonoides L. (Phog) is an endemic perennial herb that is highly resistant to all type of abiotic stresses and dominant biomass as well as phytochemicals producer in its natural habitat of the "Thar Desert" of Rajasthan, India. The present study was conducted to evaluate the effect of extreme environmental conditions on the phenolic, flavonoids, tannin content, and total antioxidant activities of C. polygonoides foliage harvested during different months. It exhibited a significant variation in the content of phenolic compounds, flavonoids, tannins, and antioxidant activity with harvesting time and all parameters are positively correlated to each other. The highest phenolic compounds and antioxidant activity was observed during severe winter and summer months, when monthly average environmental temperature was lowest and highest of the year, respectively. On the basis of the results, two harvests of C. polygonoides foliage during June and December are advised to maximize the phenolic compound production with highest antioxidant activity. These results demonstrate C. polygonoides, which is a dominant biomass producer under the harsh climatic conditions, can be an important source for the development of the functional foods rich in antioxidants in hot arid regions.

9.
Tree Physiol ; 41(11): 2063-2081, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-33929534

RESUMO

Tree species in the arid and semi-arid regions use various strategies to combat drought stress. Ziziphus nummularia (Burm. f.) Wight et Arn., native to the Thar Desert in India, is highly drought-tolerant. To identify the most drought-tolerant ecotype of Z. nummularia, one ecotype each from semi-arid (Godhra, annual rainfall >750 mm), arid (Bikaner, 250-350 mm) and hyper-arid (Jaisalmer, <150 mm) regions was selected along with two other Ziziphus species, Ziziphus mauritiana Lamk. and Ziziphus rotundifolia Lamk., and screened for parameters contributing to drought tolerance. Among these, Z. nummularia (Jaisalmer) (CIAHZN-J) was the most drought - tolerant. The tolerance nature of CIAHZN-J was associated with increased membrane stability, root length and number, length of hairs and thorns, root dry/fresh weight ratio, seed germination (at -0.5 MPa), proline content (31-fold), catalase and sugar content (two- to three-fold). Apart from these characteristics, it also exhibited the longest duration to reach highest cumulative drought stress rating, maintained higher relative water content for a longer period of time with reduced leaf size, leaf rolling and falling of older leaves, and displayed sustained shoot growth during drought stress. To determine drought tolerance in Ziziphus, we developed a morphological symptom-based screening technique in this study. Additionally, transcriptome profiling of CIAHZN-J in response to drought revealed the up-regulation of genes involved in sugar metabolism and transport, abscisic acid biosynthesis, osmoregulation, reactive oxygen species homeostasis and maintaining water potential. Expression profiles and semi-quantitative reverse transcription PCR results further correlated with the physiological and biochemical mechanisms. In conclusion, CIAHZN-J is an excellent genetic stock for the identification of drought-responsive genes and can also be deployed in crop improvement programs for drought tolerance.


Assuntos
Secas , Ziziphus , Ecótipo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Estresse Fisiológico/genética , Ziziphus/genética
10.
Gene ; 707: 126-135, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31026572

RESUMO

Sucrose plays pivotal role in energy metabolism and regulating gene expression of several physiological processes in higher plants. Here, fourteen sucrose synthase (SUS) genes have been identified in the allotetraploid genome of Indian mustard, Brassica juncea. The identified SUS genes in B. juncea (BjSUS) were derived from the two-progenitor species, B. rapa and B. nigra. Intron-exon analysis indicated loss or gain of 1-3 introns in diversification of SUS gene family. Phylogenetic analysis revealed discrete evolutionary paths for the BjSUS genes, originating from three ancestor groups, SUS I, SUS II and SUS III. Gene expression study revealed significant variability in expression of the BjSUS paralogs across the different tissues. BjSUS genes showed transcriptional activation in response to defense hormones and a late response to wounding. Tissue and temporal specificity of expression revealed importance of specific SUS paralogs at different developmental stages and under different stress conditions. The study highlighted differential involvement of SUS paralogs in sucrose metabolism across the tissues and stress-responses, in a major oilseed crop B. juncea.


Assuntos
Perfilação da Expressão Gênica/métodos , Glucosiltransferases/genética , Mostardeira/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Mostardeira/genética , Filogenia , Proteínas de Plantas/genética , Tetraploidia
11.
Plant Physiol Biochem ; 116: 57-67, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28527971

RESUMO

Brassica juncea is a chief oil yielding crop in many parts of the world including India. With advancement of molecular techniques, RT-qPCR based study of gene-expression has become an integral part of experimentations in crop breeding. In RT-qPCR, use of appropriate reference gene(s) is pivotal. The virtue of the reference genes, being constant in expression throughout the experimental treatments, needs to be validated case by case. Appropriate reference gene(s) for normalization of gene-expression data in B. juncea during the biotic stress of aphid infestation is not known. In the present investigation, 11 reference genes identified from microarray database of Arabidopsis-aphid interaction at a cut off FDR ≤0.1, along with two known reference genes of B. juncea, were analyzed for their expression stability upon aphid infestation. These included 6 frequently used and 5 newly identified reference genes. Ranking orders of the reference genes in terms of expression stability were calculated using advanced statistical approaches such as geNorm, NormFinder, delta Ct and BestKeeper. The analysis suggested CAC, TUA and DUF179 as the most suitable reference genes. Further, normalization of the gene-expression data of STP4 and PR1 by the most and the least stable reference gene, respectively has demonstrated importance and applicability of the recommended reference genes in aphid infested samples of B. juncea.


Assuntos
Afídeos/fisiologia , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Parasita/genética , Mostardeira/genética , Mostardeira/parasitologia , Algoritmos , Animais , Proteínas de Arabidopsis/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA