Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(9): e1011384, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39231196

RESUMO

Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , DNA Viral , Epigenoma , DNA Viral/genética , Bacteriófagos/genética , Engenharia Genética/métodos , Bacteriófago T4/genética , Mutagênese Sítio-Dirigida/métodos , Escherichia coli/genética , Escherichia coli/virologia , Genoma Viral
2.
ACS Synth Biol ; 13(2): 457-465, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38295293

RESUMO

Modern biological science, especially synthetic biology, relies heavily on the construction of DNA elements, often in the form of plasmids. Plasmids are used for a variety of applications, including the expression of proteins for subsequent purification, the expression of heterologous pathways for the production of valuable compounds, and the study of biological functions and mechanisms. For all applications, a critical step after the construction of a plasmid is its sequence validation. The traditional method for sequence determination is Sanger sequencing, which is limited to approximately 1000 bp per reaction. Here, we present a highly scalable in-house method for rapid validation of amplified DNA sequences using long-read Nanopore sequencing. We developed two-step amplicon and transposase strategies to provide maximum flexibility for dual barcode sequencing. We also provide an automated analysis pipeline to quickly and reliably analyze sequencing results and provide easy-to-interpret results for each sample. The user-friendly DuBA.flow start-to-finish pipeline is widely applicable. Furthermore, we show that construct validation using DuBA.flow can be performed by barcoded colony PCR amplicon sequencing, thus accelerating research.


Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Plasmídeos/genética , DNA/genética
3.
ACS Synth Biol ; 13(4): 1116-1127, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38597458

RESUMO

Synthetic Sc2.0 yeast strains contain hundreds to thousands of loxPsym recombination sites that allow restructuring of the Saccharomyces cerevisiae genome by SCRaMbLE. Thus, a highly diverse yeast population can arise from a single genotype. The selection of genetically diverse candidates with rearranged synthetic chromosomes for downstream analysis requires an efficient and straightforward workflow. Here we present loxTags, a set of qPCR primers for genotyping across loxPsym sites to detect not only deletions but also inversions and translocations after SCRaMbLE. To cope with the large number of amplicons, we generated qTagGer, a qPCR genotyping primer prediction tool. Using loxTag-based genotyping and long-read sequencing, we show that light-inducible Cre recombinase L-SCRaMbLE can efficiently generate diverse recombination events when applied to Sc2.0 strains containing a linear or a circular version of synthetic chromosome III.


Assuntos
Cromossomos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Genótipo , Fluxo de Trabalho , Rearranjo Gênico , Genoma Fúngico/genética
4.
iScience ; 27(9): 110774, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39280619

RESUMO

All organisms must respond to environmental changes. In bacteria, small RNAs (sRNAs) are an important aspect of the regulation network underlying the adaptation to such changes. sRNAs base-pair with their target mRNAs, allowing rapid modulation of the proteome. This post-transcriptional regulation is usually facilitated by RNA chaperones, such as Hfq. sRNAs have a potential as synthetic regulators that can be modulated by rational design. In this study, we use a library-based approach and oxacillin susceptibility assays to investigate the importance of the seed region length for synthetic sRNAs based on RybB and SgrS scaffolds in Escherichia coli. In the presence of Hfq we show that 12 nucleotides are sufficient for regulation. Furthermore, we observe a scaffold-specific Hfq-dependency and processing by RNase E. Our results provide information for design considerations of synthetic sRNAs in basic and applied research.

5.
Nat Ecol Evol ; 7(5): 756-767, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012377

RESUMO

Highly specific interactions between proteins are a fundamental prerequisite for life, but how they evolve remains an unsolved problem. In particular, interactions between initially unrelated proteins require that they evolve matching surfaces. It is unclear whether such surface compatibilities can only be built by selection in small incremental steps, or whether they can also emerge fortuitously. Here, we used molecular phylogenetics, ancestral sequence reconstruction and biophysical characterization of resurrected proteins to retrace the evolution of an allosteric interaction between two proteins that act in the cyanobacterial photoprotection system. We show that this interaction between the orange carotenoid protein (OCP) and its unrelated regulator, the fluorescence recovery protein (FRP), evolved when a precursor of FRP was horizontally acquired by cyanobacteria. FRP's precursors could already interact with and regulate OCP even before these proteins first encountered each other in an ancestral cyanobacterium. The OCP-FRP interaction exploits an ancient dimer interface in OCP, which also predates the recruitment of FRP into the photoprotection system. Together, our work shows how evolution can fashion complex regulatory systems easily out of pre-existing components.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/fisiologia , Carotenoides/metabolismo
6.
Front Bioeng Biotechnol ; 10: 982975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185425

RESUMO

Microbial diversity is magnificent and essential to almost all life on Earth. Microbes are an essential part of every human, allowing us to utilize otherwise inaccessible resources. It is no surprise that humans started, initially unconsciously, domesticating microbes for food production: one may call this microbial domestication 1.0. Sourdough bread is just one of the miracles performed by microbial fermentation, allowing extraction of more nutrients from flour and at the same time creating a fluffy and delicious loaf. There are a broad range of products the production of which requires fermentation such as chocolate, cheese, coffee and vinegar. Eventually, with the rise of microscopy, humans became aware of microbial life. Today our knowledge and technological advances allow us to genetically engineer microbes - one may call this microbial domestication 2.0. Synthetic biology and microbial chassis adaptation allow us to tackle current and future food challenges. One of the most apparent challenges is the limited space on Earth available for agriculture and its major tolls on the environment through use of pesticides and the replacement of ecosystems with monocultures. Further challenges include transport and packaging, exacerbated by the 24/7 on-demand mentality of many customers. Synthetic biology already tackles multiple food challenges and will be able to tackle many future food challenges. In this perspective article, we highlight recent microbial synthetic biology research to address future food challenges. We further give a perspective on how synthetic biology tools may teach old microbes new tricks, and what standardized microbial domestication could look like.

7.
Sci Rep ; 11(1): 8638, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883642

RESUMO

The global demand for fine-flavour cocoa has increased worldwide during the last years. Fine-flavour cocoa offers exceptional quality and unique fruity and floral flavour attributes of high demand by the world's elite chocolatiers. Several studies have highlighted the relevance of cocoa fermentation to produce such attributes. Nevertheless, little is known regarding the microbial interactions and biochemistry that lead to the production of these attributes on farms of industrial relevance, where traditional fermentation methods have been pre-standardized and scaled up. In this study, we have used metagenomic approaches to dissect on-farm industrial fermentations of fine-flavour cocoa. Our results revealed the presence of a shared core of nine dominant microorganisms (i.e. Limosilactobacillus fermentum, Saccharomyces cerevisiae, Pestalotiopsis rhododendri, Acetobacter aceti group, Bacillus subtilis group, Weissella ghanensis group, Lactobacillus_uc, Malassezia restricta and Malassezia globosa) between two farms located at completely different agro-ecological zones. Moreover, a community metabolic model was reconstructed and proposed as a tool to further elucidate the interactions among microorganisms and flavour biochemistry. Our work is the first to reveal a core of microorganisms shared among industrial farms, which is an essential step to process engineering aimed to design starter cultures, reducing fermentation times, and controlling the expression of undesirable phenotypes.


Assuntos
Cacau/química , Cacau/microbiologia , Fermentação/genética , Metagenoma/genética , Chocolate/microbiologia , Aromatizantes/química , Microbiologia de Alimentos/métodos
8.
Microbiologyopen ; 8(4): e00572, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30851083

RESUMO

The vast microbial diversity on the planet represents an invaluable source for identifying novel activities with potential industrial and therapeutic application. In this regard, metagenomics has emerged as a group of strategies that have significantly facilitated the analysis of DNA from multiple environments and has expanded the limits of known microbial diversity. However, the functional characterization of enzymes, metabolites, and products encoded by diverse microbial genomes is limited by the inefficient heterologous expression of foreign genes. We have implemented a pipeline that combines NGS and Sanger sequencing as a way to identify fosmids within metagenomic libraries. This strategy facilitated the identification of putative proteins, subcloning of targeted genes and preliminary characterization of selected proteins. Overall, the in silico approach followed by the experimental validation allowed us to efficiently recover the activity of previously hidden enzymes derived from agricultural soil samples. Therefore, the methodology workflow described herein can be applied to recover activities encoded by environmental DNA from multiple sources.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/genética , Enzimas/genética , Biblioteca Gênica , Metagenômica/métodos , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Enzimas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Microbiologia do Solo
9.
Sci Rep ; 9(1): 11764, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409850

RESUMO

The increase in antibiotic resistant bacteria has raised global concern regarding the future effectiveness of antibiotics. Human activities that influence microbial communities and environmental resistomes can generate additional risks to human health. In this work, we characterized aquatic microbial communities and their resistomes in samples collected at three sites along the Bogotá River and from wastewaters at three city hospitals, and investigated community profiles and antibiotic resistance genes (ARGs) as a function of anthropogenic contamination. The presence of antibiotics and other commonly used drugs increased in locations highly impacted by human activities, while the diverse microbial communities varied among sites and sampling times, separating upstream river samples from more contaminated hospital and river samples. Clinically relevant antibiotic resistant pathogens and ARGs were more abundant in contaminated water samples. Tracking of resistant determinants to upstream river waters and city sources suggested that human activities foster the spread of ARGs, some of which were co-localized with mobile genetic elements in assembled metagenomic contigs. Human contamination of this water ecosystem changed both community structure and environmental resistomes that can pose a risk to human health.


Assuntos
Resistência Microbiana a Medicamentos/genética , Atividades Humanas , Microbiota/efeitos dos fármacos , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Colômbia , Sedimentos Geológicos/microbiologia , Humanos , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA