Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ear Hear ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049080

RESUMO

OBJECTIVES: To explore postural disability in Usher Syndrome (USH) patients using temporal posturographic analysis to better elucidate sensory compensation strategies of deafblind patients for posture control and correlate the Activities-specific Balance Confidence (ABC) scale with posturographic variables. DESIGN: Thirty-four genetically confirmed USH patients (11 USH1, 21 USH2, 2 USH 4) from the Otolaryngology Outpatient Clinic and 35 controls were prospectively studied using both classical and wavelet temporal analysis of center of pressure (CoP) under different visual conditions on static and dynamic platforms. The functional impact of balance was assessed with the ABC scale. Classical data in the spatial domain, Sensorial Organization Test, and frequency analysis of the CoP were analyzed. RESULTS: On unstable surfaces, USH1 had greater CoP surface area with eyes open (38.51 ± 68.67) and closed (28.14 ± 31.64) versus controls (3.31 ± 4.60), p < 0.001 and (7.37 ± 7.91), p < 0.001, respectively. On an unstable platform, USH consistently showed increased postural sway, with elevated angular velocity versus controls with eyes open (USH1 [44.94 ± 62.54]; USH2 [55.64 ± 38.61]; controls [13.4 ± 8.57]) (p = 0.003; p < 0.001) and closed (USH1 [60.36 ± 49.85], USH2 [57.62 ± 42.36]; controls [27.31 ± 19.79]) (p = 0.002; p = 0.042). USH visual impairment appears to be the primary factor influencing postural deficits, with a statistically significant difference observed in the visual Sensorial Organization Test ratio for USH1 (80.73 ± 40.07, p = 0.04) and a highly significant difference for USH2 (75.48 ± 31.67, p < 0.001) versus controls (100). In contrast, vestibular (p = 0.08) and somatosensory (p = 0.537) factors did not reach statistical significance. USH exhibited lower visual dependence than controls (30.31 ± 30.08) (USH1 [6 ± 11.46], p = 0.004; USH2 [8 ± 14.15], p = 0.005). The postural instability index, that corresponds to the ratio of spectral power index and canceling time, differentiated USH from controls on unstable surface with eyes open USH1 (3.33 ± 1.85) p < 0.001; USH2 (3.87 ± 1.05) p < 0.002; controls (1.91 ± 0.85) and closed USH1 (3.91 ± 1.65) p = 0.005; USH2 (3.92 ± 1.05) p = 0.045; controls (2.74 ± 1.27), but not USH1 from USH2. The canceling time in the anteroposterior direction in lower zone distinguished USH subtypes on stable surface with optokinetic USH1 (0.88 ± 1.03), USH2 (0.29 ± 0.23), p = 0.026 and on unstable surface with eyes open USH1 (0.56 ± 1.26), USH2 (0.072 ± 0.09), p = 0.036. ABC scale could distinguish between USH patients and controls, but not between USH subtypes and it correlated with CoP surface area on unstable surface with eyes open only in USH1(ρ = 0.714, p = 0.047). CONCLUSIONS: USH patients, particularly USH1, exhibited poorer balance control than controls on unstable platform with eyes open and appeared to rely more on proprioceptive information while suppressing visual input. USH2 seems to use different multisensory balance strategies that do not align as well with the ABC scale. The advanced analysis provided insights into sensory compensation strategies in USH subtypes.

2.
Sci Rep ; 14(1): 3701, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355682

RESUMO

Usher Syndrome classification takes into account the absence of vestibular function but its correlation with genotype is not well characterized. We intend to investigate whether video Head Impulse Test (vHIT) is useful in screening and to differentiate Usher Syndrome types. 29 Usher patients (USH) with a genetically confirmed diagnosis and 30 healthy controls were studied with vHIT and dizziness handicap inventory questionnaire (DHI). Statistical significant differences between USH1, USH2 and controls were found in the vestibulo-ocular-reflex (VOR) gain of all SCCs, with USH1 patients consistently presenting smaller gains. VOR gain of the right lateral SCC could discriminate controls from USH1, and USH2 from USH1 with an overall diagnostic accuracy of 90%. USH1 DHI correlated with VOR (ρ = - 0,971, p = 0.001). Occurrence rate of covert and overt lateral semicircular canals refixation saccades (RS) was significantly different between groups, being higher in USH1 patients (p < 0.001). USH1 peak velocity of covert and overt saccades was higher for lateral semicircular canals (p < 0.05 and p = 0.001) compared with USH2 and controls. Covert saccades occurrence rate for horizontal SCCs could discriminate USH1 from USH2 patients and controls with a diagnostic accuracy of 85%. vHIT is a fast and non-invasive instrument which allowed us to screen and distinguish Usher patients from controls with a high precision. Importantly, its use allowed further discrimination between USH1 from USH2 groups. Moreover, VOR gain seems to correlate with vertigo-related quality of life in more severe phenotypes.


Assuntos
Reflexo Vestíbulo-Ocular , Síndromes de Usher , Humanos , Qualidade de Vida , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética , Vertigem , Teste do Impulso da Cabeça , Movimentos Sacádicos
3.
Acta Otolaryngol ; : 1-6, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151018

RESUMO

BACKGROUND: Usher's syndrome type II (USH2) is a rare genetic disorder encompassing hearing loss, vision impairment, and apparent intact vestibular function. Recent research suggests a potential involvement of the otolith vestibular receptors in USH2. AIMS/OBJECTIVES: Evaluate otolith dynamic function in USH2. MATERIAL AND METHODS: Twenty-two USH2 (median age 53.9 ± 2.99) and age-matched controls underwent a complete battery vestibular testing including air conducted cervical and ocular vestibular evoked myogenic potentials (c-VEMPs and o-VEMPs). Vestibular function tests were correlated with Activities Balance Scale (ABC) and Dizziness Handicap Inventory (DHI) scores. RESULTS: Fourteen USH2 reported previous vertigo (vs none control). Among 88 ears, c-VEMPs were absent in 15 USH2 cases and 4 controls (p = 0.034), while o-VEMPs were absent in 22 USH2 cases and 12 controls (p = 0.129). There were significant differences between USH2 vs controls in right ear o-VEMP N1 latencies (median 11.60/10.40, p < 0.010), N1-P1 amplitudes (median 5.15/10.10, p < 0.003) and in o-VEMP N1-P1 asymmetry ratio (median 24.78/40.50, p < 0.014). USH2 showed a strong correlation between o-VEMP amplitude and DHI score (p = 0.003, ρ = 0.769). No association was found between vertigo and VEMPs subgroups. CONCLUSIONS AND SIGNIFICANCE: Our findings suggest the presence of otolith dysfunction in USH2, which is independent from subjectively reported dizziness. Incorporating vestibular testing into USH2 evaluation and monitoring could enhance characterization of this multisensory disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA