Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Environ Geochem Health ; 45(5): 1555-1572, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35532837

RESUMO

Metal contamination from upstream river water is a threat to coastal and estuarine ecosystem. The present study was undertaken to unveil sedimentation processes and patterns of heavy metal deposition along the salinity gradient of a tropical estuary and its mangrove ecosystem. Sediment columns from three representative sites of differential salinity, anthropogenic interference, and sediment deposition pattern were sampled and analyzed for grain size distribution and metal concentrations as a function of depth. Sediments were dominantly of silty-medium sand texture. A suite of fluvial and alluvial processes, and marine depositional forcing control the sediment deposition and associated heavy metal loading in this estuary. The depth profile revealed a gradual increase in heavy metal accumulation in recent top layer sediments and smaller fractions (silt + clay), irrespective of tidal regimes. Alluvial processes and long tidal retention favor accumulation of heavy metals. Enrichment factor (0.52-15), geo-accumulation index (1.4-5.8), and average pollution load index (PLI = 2.0) indicated moderate to higher heavy metal contamination status of this estuary. This study showed that alluvial processes acted as dominant drivers for the accumulation of metals in sediments, which prevailed over the influence of marine processes. Longer tidal retention of the water column favored more accumulation of heavy metals. Metal accumulation in the sediments entails a potential risk of bioaccumulation and biomagnification through the food web, and may increasingly impact estuarine ecology, economy, and ultimately human health.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Ecossistema , Sedimentos Geológicos , Rios , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Metais Pesados/análise , Estuários , Água , Medição de Risco
2.
Environ Res ; 204(Pt B): 112067, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34543636

RESUMO

COVID-19 positive patients can egest live SARS-CoV-2 virus and viral genome fragments through faecal matter and urine, raising concerns about viral transmission through the faecal-oral route and/or contaminated aerosolized water. These concerns are amplified in many low- and middle-income countries, where raw sewage is often discharged into surface waterways and open defecation is common. Nonetheless, there has been no evidence of COVID-19 transmission via ambient urban water, and the virus viability in such aquatic matrices is believed to be minimal and not a matter of concern. In this manuscript, we attempt to discern the presence of SARS-CoV-2 genetic material (ORF-1ab, N and S genes) in the urban water (lakes, rivers, and drains) of the two Indian cities viz., Ahmedabad (AMD), in western India with 9 wastewater treatment plants (WWTPs) and Guwahati (GHY), in the north-east of the country with no such treatment facilities. The present study was carried out to establish the applicability of environmental water surveillance (E-wat-Surveillance) of COVID-19 as a potential tool for public health monitoring at the community level. 25.8% and 20% of the urban water samples had detectable SARS-CoV-2 RNA load in AMD and GHY, respectively. N-gene > S-gene > ORF-1ab-gene were readily detected in the urban surface water of AMD, whereas no such observable trend was noticed in the case of GHY. The high concentrations of SARS-CoV-2 genes (e.g., ORF-1ab; 800 copies/L for Sabarmati River, AMD and S-gene; 565 copies/L for Bharalu urban river, GHY) found in urban waters suggest that WWTPs do not always completely remove the virus genetic material and that E-wat-Surveillance of COVID-19 in cities/rural areas with poor sanitation is possible.


Assuntos
COVID-19 , SARS-CoV-2 , Cidades , Humanos , RNA Viral , Saneamento , Águas Residuárias
3.
Ecotoxicol Environ Saf ; 229: 113075, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923327

RESUMO

The present research reports the level of nitrate (NO3-), associated health risks and possible sources of contamination in groundwater from south India. Many samples (32%) are above or approaching the recommended level of NO3- for safe drinking water. The correlation analysis indicates different sources of NO3- contamination in different regions rather than a common origin. The isotopic measurements provide information about potential nitrogen sources contributing NO3- to the groundwater. Based on isotope analysis, the sources of NO3- in the groundwater of this region are likely to be from (a) septic sewage (b) organic nitrogen (animal and livestock excreta) (c) sewage (domestic & chemical fertilizers). Among the sample analyzed sewage, manure and septic sewage contribute 46%, 23% and 31% NO3- to groundwater. The HQ > 1 indicates non-carcinogenic health risk due to consumption of high NO3- in drinking water. Among the studied age groups, infants are exposed to higher risk than children and adults. Results indicate that groundwater of this region is polluted with NO3- due to anthropogenic activities. Continuous consumption of such water may pose serious health risk to the residents.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Animais , Efeitos Antropogênicos , Monitoramento Ambiental , Humanos , Nitratos/análise , Isótopos de Nitrogênio/análise , Medição de Risco , Poluentes Químicos da Água/análise
4.
Environ Res ; 202: 111780, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329638

RESUMO

The present study aims at the assessment of environmental quality of the most polluted stretch of river Yamuna along the megacity of Delhi. The study was conducted in order to examine toxicity and health hazards associated with persistent pollutants present in the fluvial ecosystem. Eighty four sediment and 56 vegetable samples from same locations were collected from the Delhi segment of river Yamuna flood plain in order to examine 20 organochlorine pesticides (OCPs) and 9 heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn). Both the organic and inorganic groups of persistent toxic substances were monitored and analysed for the extent of eco-toxicological as well as dietary health risks posed to the local population. Eco-toxicological assessment was done based on sediment quality guidelines, enrichment factor, geo-accumulation index, degree of contamination and Pollution Load Index. The dietary-risk was assessed with the help of translocation factors (TF) of these pollutants in vegetables. Carcinogenic and non-carcinogenic health risks from consumption of vegetables were also investigated. The level of concern for heavy metals was greater than that of OCPs as per the sediment quality guidelines. DDT, Cd, Pb and Zn had maximum concentrations corresponding to level 3 of concern, while Cr and Ni reached up to the highest i.e., 4th level of concern. Sediment samples were found to be enriched and contaminated significantly with Cd and moderately with Pb, as represented respectively by enrichment factors and contamination factors (CF). CF for metals lied in order Zn > Cd > CrNi > PbCu. Pollution load index was highest at the location lying on the exit point of Yamuna in Delhi. TF values greater than 1 were observed in majority of samples analysed for Ni, Cr, Cu and Zn. Spinach topped among vegetables in terms of metal contamination. Cd, Ni and Pb accumulated more in the roots, as against Mn, Zn, Cu and Cr which had higher accumulation in the shoots. Translocation factors were substantially high in vegetables for most of the OCPs, clearly indicating bioaccumulation and potential health risk to the consumers. Health risk to humans was assessed for non-carcinogenic and carcinogenic potentials from ingestion of vegetables. Hazard Quotient (HQ) > 1 due to radish (roots and leaves) and cauliflower consumption in children indicated non-carcinogenic risk. Hazard Index (HI) beyond 1 for all the vegetables (except onion leaves) confirmed substantial cumulative risk. Lifetime cancer risk (LCR) revealed moderate (spinach, radish, beet root and cauliflower) to low (all the others) levels of carcinogenic risk to humans. Cancer risks from γ-HCH, ß- HCH, Hept, Hept Ep, Ald, p,p'-DDT, and Cr exposure through the food chain could be well established.


Assuntos
Metais Pesados , Praguicidas , Poluentes do Solo , Criança , China , Ecossistema , Monitoramento Ambiental , Humanos , Índia , Metais Pesados/análise , Metais Pesados/toxicidade , Praguicidas/toxicidade , Medição de Risco , Rios , Poluentes do Solo/análise
5.
J Environ Manage ; 298: 113413, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352482

RESUMO

The Sutlej River basin of the western Himalaya (study area), owing to its unique geographical disposition, receives precipitation from both the Indian summer monsoon (ISM) and the Westerlies. The characteristic timing and intensity of the ISM and Westerlies, leaves a distinct footprint on the sediment load of the River. Analysis with the last forty years data, shows an increasing trend for temperature. While for precipitation during the same period, the Spiti watershed on the west has highest monthly accumulated precipitation with long term declining trend, in contrast to the other areas where an increasing trend has been observed. Thus, to probe the hydrological variability and the seasonal attributes, governed by the Westerlies and ISM in the study area, we analyzed precipitation, temperature, snow cover area (in %), discharge, suspended sediment concentration (SSC) and suspended sediment load (SSL) for the period 2004 - 2008. To accomplish the task, we used the available data of five hydrological stations located in the study area. Inter-annual shift in peak discharge during the monsoon period is controlled by the variation in precipitation, snow melt, glacier melt and temperature. Besides seasonal variability has been observed in generation of the sediments and its delivery to the river. Our analysis indicates, dominance of the Westerlies footprints in the hydrological parameters of the Spiti region, towards western part of the study area. While, it is observed that the hydrology of the Khab towards eastern part of the study area shows dominance of ISM. Further downstream, the hydrology of Nathpa station also shows dominance of ISM. It also emerged out that the snowmelt contribution to the River flow is mostly during the initial part, at the onset of the monsoon, while for rest and major part of the summer monsoon season, the River flow is augmented by the precipitation, glacial melt and some snow melt. We observed, that the SSC increases exponentially in response to increase in temperature and correlates positively with River discharge. The average daily SSL in the summer monsoon is many times more than that in the winter monsoon. The downstream decrease in steepness of the sediment rating curve is attributed to either a change in the River-sediment dynamics or on account of the anthropogenic forcing. The top 1% of the extreme summer monsoon events (only 4 events) in our study area contribute up to 45% of SSL to the total sediment load budget. It has also been observed that the River-sediment dynamics in the upstream catchments are more vulnerable and sensitive to the extreme events in comparison to the downstream catchments. The present study for the first time gives a holistic insight in to the complex dynamics of the hydrological processes operational in the study area. The research findings would be crucial for managing the water resources of the region and the linked water and food security.


Assuntos
Mudança Climática , Água , Monitoramento Ambiental , Hidrologia , Rios , Neve
6.
J Chem Inf Model ; 60(12): 5832-5852, 2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33326239

RESUMO

We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/química , Inteligência Artificial , Sítios de Ligação , Simulação por Computador , Bases de Dados de Compostos Químicos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Relação Estrutura-Atividade
7.
Environ Geochem Health ; 41(1): 53-70, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29744698

RESUMO

Hooghly-Matla estuarine system along with the Sundarbans mangroves forms one of the most diverse and vulnerable ecosystems in the world. We have investigated the distribution of Co, Cr, Cu, Fe and Zn along with sediment properties at six locations [Shamshernagar (S1), Kumirmari (S2 and S3), Petuaghat (S4), Tapoban (S5) and Chemaguri (S6)] in the Hooghly estuary and reclaimed islands of the Sundarbans for assessing the degree of contamination and potential ecological risks. Enrichment factor values (0.9-21.6) show enrichment of Co, Cu and Zn in the intertidal sediments considering all sampling locations and depth profiles. Geo-accumulation index values irrespective of sampling locations and depth revealed that Co and Cu are under class II and class III level indicating a moderate contamination of sediments. The pollution load index was higher than unity (1.6-2.1), and Co and Cu were the major contributors to the sediment pollution followed by Zn, Cr and Fe with the minimum values at S1 and the maximum values at S5. The sediments of the Hooghly-Matla estuarine region (S4, S5 and S6) showed considerable ecological risks, when compared with effect range low/effect range median and threshold effect level/probable effect level values. The variation in the distribution of the studied elements may be due to variation in discharge pattern and exposure to industrial effluent and domestic sewage, storm water and agricultural run-off and fluvial dynamics of the region. The study illuminates the necessity for the proper management of vulnerable coastal estuarine ecosystem by stringent pollution control measures along with regular monitoring and checking program.


Assuntos
Monitoramento Ambiental , Estuários , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Ecossistema , Índia , Medição de Risco , Áreas Alagadas
8.
Appl Phys B ; 120(4): 609-615, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26321796

RESUMO

We present column CO2 measurements taken by the passive miniaturized laser heterodyne radiometer (Mini-LHR) at 1611.51 nm at the Mauna Loa Observatory in Hawaii. The Mini-LHR was operated autonomously, during the month of May 2013 at this site, working in tandem with an AERONET sun photometer that measures aerosol optical depth at 15-min intervals during daylight hours. Laser heterodyne radiometry has been used since the 1970s to measure atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. This iteration of the technology utilizes distributed feedback lasers to produce a low-cost, small, portable sensor that has potential for global deployment. Applications of this instrument include supplementation of existing monitoring networks to provide denser global coverage, providing validation for larger satellite missions, and targeting regions of carbon flux uncertainty. Also presented here are preliminary retrieval analysis and the performance analysis that demonstrate that the Mini-LHR responds extremely well to changes in the atmospheric absorption.

9.
Environ Technol ; 34(17-20): 2701-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24527632

RESUMO

In this study we investigated the role of arsenic-resistant bacteria Arthrobacter sp. biomass for removal of arsenite as well as arsenate from aqueous solution. The biomass sorption characteristics were studied as a function of biomass dose, contact time and pH. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm. The Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of the biomass for As(+3) and As(+5) was found to be 74.91 mg/g (pH 7.0) and 81.63 mg/g (pH 3.0), respectively using 1 g/L biomass with a contact time of 30 min at 28 degrees C. The mean sorption energy values calculated from the D-R model indicated that the biosorption of As(+3) and As(+5) onto Arthrobacter sp. biomass took place by chemical ion-exchange. The thermodynamic parameters showed that the biosorption of As(+3) and As(+5) ions onto Arthrobacter sp. biomass was feasible, spontaneous and exothermic in nature. Kinetic evaluation of experimental data showed that biosorption of As(+3) and As(+5) followed pseudo-second-order kinetics. Fourier transform infrared spectroscopy (FT-IR) analysis indicated the involvement of possible functional groups (-OH, -C=O and -NH) in the As(+3) and As(+5) biosorption process. Bacterial cell biomass can be used as a biosorbent for removal of arsenic from arsenic-contaminated water.


Assuntos
Arseniatos/isolamento & purificação , Arsenitos/isolamento & purificação , Arthrobacter/química , Biomassa , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Arthrobacter/citologia , Termodinâmica
10.
Environ Sci Pollut Res Int ; 30(8): 20631-20649, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36255575

RESUMO

Recent studies have endorsed that surface water chemical composition in the Himalayas is impacted by climate change-induced accelerated melting of glaciers. Chemical weathering dynamics in the Ladakh region is poorly understood, due to unavailability of in situ dataset. The aim of the present study is to investigate how the two distinct catchments (Lato and Stok) drive the meltwater chemistry of the Indus River and its tributary, in the Western Himalayas. Water samples were collected from two glaciated catchments (Lato and Stok), Chabe Nama (tributary) and the Indus River in Ladakh. The mildly alkaline pH (range 7.3-8.5) and fluctuating ionic trend of the meltwater samples reflected the distinct geology and weathering patterns of the Upper Indus Basin (UIB). Gibbs plot and mixing diagram revealed rock weathering outweighed evaporation and precipitation. The strong associations between Ca2+-HCO3-, Mg2+-HCO3-, Ca2+-Mg2+, Na+-HCO3-, and Mg2+-Na+ demonstrated carbonate rock weathering contributed to the major ion influx. Principal component analysis (PCA) marked carbonate and silicates as the most abundant minerals respectively. Chemical weathering patterns were predominantly controlled by percentage of glacierized area and basin runoff. Thus, Lato with the larger glacierized area (~ 25%) and higher runoff contributed low TDS, HCO3-, Ca2+, and Na+ and exhibited higher chemical weathering, whereas lower chemical weathering was evinced at Stok with the smaller glacierized area (~ 5%). In contrast, the carbonate weathering rate (CWR) of larger glacierized catchments (Lato) exhibits higher average value of 15.7 t/km2/year as compared to smaller glacierized catchment (Stok) with lower average value 6.69 t/km2/year. However, CWR is high in both the catchments compared to silicate weathering rate (SWR). For the first time, in situ datasets for stream water chemical characteristics have been generated for Lato and Stok glaciated catchments in Ladakh, to facilitate healthy ecosystems and livelihoods in the UIB.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Ecossistema , Qualidade da Água , Rios/química , Poluentes Químicos da Água/análise , Água/análise , Carbonatos/análise
11.
Oral Dis ; 18(5): 469-76, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22251088

RESUMO

BACKGROUND: Multistep pathways and mechanisms are involved in the development of oral cancer. Chromosomal alterations are one of such key mechanisms implicated oral carcinogenesis. Therefore, this study aims to determine the genomic copy number alterations (CNAs) in oral squamous cell carcinoma (OSCC) using array comparative genomic hybridization (aCGH) and in addition attempt to correlate CNAs with modified gene expression. MATERIALS AND METHODS: Genome-wide screening was performed on 15 OSCCs using high-density aCGH. On the basis of pathway analysis, three genes (ISG15, Nestin and WNT11) which mapped to CNA regions were selected for further evaluation of their mRNA expression using quantitative reverse transcriptase PCR (qRT-PCR). RESULTS: Copy number alterations were observed on multiple genomic regions, including amplifications on 1p, 3q, 5p, 6p, 7p, 8q, 9q, 11q, 12q, 16p, 18p and deletions on 3p, 7q, 8p, 11q, 19q and 20q. Among the three selected genes, ISG15 had the highest mRNA expression level with a 22.5-fold increase, followed by Nestin with a 4.5-fold increase and WNT11 with a 2.5-fold increase. CONCLUSIONS: This study has identified several major CNAs in oral cancer genomes and indicated that this correlates with over expression of the ISG15, WNT11, and Nestin genes.


Assuntos
Carcinoma de Células Escamosas/genética , Citocinas/genética , Proteínas de Filamentos Intermediários/genética , Neoplasias Bucais/genética , Proteínas do Tecido Nervoso/genética , Ubiquitinas/genética , Proteínas Wnt/genética , Idoso , Carcinoma de Células Escamosas/metabolismo , Hibridização Genômica Comparativa , Citocinas/biossíntese , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Filamentos Intermediários/biossíntese , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Nestina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Ubiquitinas/biossíntese , Proteínas Wnt/biossíntese
12.
Environ Monit Assess ; 184(5): 3027-42, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21717202

RESUMO

The pollution of aquifer sediments by heavy metals has assumed serious concern due to their toxicity and accumulative behavior. Changes in environmental conditions can strongly influence the behavior of both essential and toxic elements by altering the forms in which they occur and therefore quantification of the different forms of metal is more meaningful than total metal concentrations. In this study, fractionation of metal ions in aquifer sediments of Semria Ojhapatti area, Bhojpur district, Bihar has been studied to determine the ecotoxic potential of metal ions. The investigations suggest that iron, copper, and arsenic have a tendency to remain associated in the following order residual > reducible > acid-soluble > oxidizable; manganese and zinc have tendency to be associated as residual > acid-soluble > reducible > oxidizable. The risk assessment code reveals that manganese and zinc occur in significant concentration in acid-soluble fraction and therefore comes under the high risk category and can easily enter the food chain. Most of the iron, copper, and arsenic occur as immobile fraction (i.e. residual) followed by its presence in reducible fraction and would pose threat to the water quality due to changing redox conditions. The metal enrichment factor in the study area shows moderate to significant metal enrichment in the aquifer sediments which may pose a real threat in near future. The geo-accumulation index of metals also shows that the metals lie in the range of strongly contaminated (for iron at shallow depths) to moderately contaminated to uncontaminated values.


Assuntos
Sedimentos Geológicos/química , Água Subterrânea/química , Metais/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Índia , Modelos Químicos , Medição de Risco , Poluição Química da Água/estatística & dados numéricos
13.
Mar Pollut Bull ; 174: 113273, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35090268

RESUMO

The dynamics of the coastal aquifers are well-expressed by geochemical and isotopic signatures. Coastal regions often exhibit complex groundwater recharge pattern due to the influence of depression in the Bay of Bengal, tidal variations on surface waters, saline water intrusion and agricultural return flows. In this research, groundwater recharge processes occurring in coastal Tamil Nadu, South India were evaluated using major ion chemistry and environmental isotopes. A total of 170 groundwater samples were collected from shallow and deep aquifers during both post-monsoon (POM) and pre-monsoon (PRM) seasons. The isotopic results showed a wide variation in the shallow groundwater, suggesting contribution from multiple recharge sources. But, the deeper groundwater recharge is mainly from precipitation. The northern part of the study area showed more depleted isotopic values, which rapidly changed towards south from -6.8 to -4.4‰. Alternatively, central and southern parts exhibited relatively enriched isotopic content with variation from -0.58 to -2.7‰. Groundwater was discerned to be brackish to saline with chloride content, 600-2060 mgL-1 and δ18O ranging from -5.8 to -4.5‰, suggesting influence of the saline water sources. A minor influence of anthropogenic activities was also observed in the deeper groundwater during PRM, which was confirmed by tritium and Cl- trends. The old groundwater with depleted isotopic content infer recharged by distant sources while modern groundwater with enriched isotopes points to the influence of evaporated recharge.


Assuntos
Efeitos Antropogênicos , Água Subterrânea , Monitoramento Ambiental , Índia , Isótopos/análise
14.
Sci Rep ; 12(1): 2286, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650242

RESUMO

Water quality degradation and metal contamination in groundwater are serious concerns in an arid region with scanty water resources. This study aimed at evaluating the source of uranium (U) and potential health risk assessment in groundwater of the arid region of western Rajasthan and northern Gujarat. The probable source of vanadium (V) and fluorine (F) was also identified. U and trace metal concentration, along with physicochemical characteristics were determined for 265 groundwater samples collected from groundwater of duricrusts and palaeochannels of western Rajasthan and northern Gujarat. The U concentration ranged between 0.6 and 260 µg L-1 with a mean value of 24 µg L-1, and 30% of samples surpassed the World Health Organization's limit for U (30 µg L-1). Speciation results suggested that dissolution of primary U mineral, carnotite [K2(UO2)2(VO4)2·3H2O] governs the enrichment. Water-rock interaction and evaporation are found the major hydrogeochemical processes controlling U mineralization. Groundwater zones having high U concentrations are characterized by Na-Cl hydrogeochemical facies and high total dissolved solids. It is inferred from geochemical modelling and principal component analysis that silicate weathering, bicarbonate complexation, carnotite dissolution, and ion exchange are principal factors controlling major solute ion chemistry. The annual ingestion doses of U for all the age groups are found to be safe and below the permissible limit in all samples. The health risk assessment with trace elements manifested high carcinogenic risks for children.


Assuntos
Água Subterrânea , Urânio , Poluentes Químicos da Água , Criança , Monitoramento Ambiental/métodos , Fluoretos/análise , Água Subterrânea/química , Humanos , Índia , Medição de Risco , Urânio/análise , Poluentes Químicos da Água/análise
15.
Phys Rev Lett ; 106(13): 130401, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21517360

RESUMO

We have created a long-lived (≈40 s) persistent current in a toroidal Bose-Einstein condensate held in an all-optical trap. A repulsive optical barrier across one side of the torus creates a tunable weak link in the condensate circuit, which can affect the current around the loop. Superflow stops abruptly at a barrier strength such that the local flow velocity at the barrier exceeds a critical velocity. The measured critical velocity is consistent with dissipation due to the creation of vortex-antivortex pairs. This system is the first realization of an elementary closed-loop atom circuit.

16.
Foot Ankle Surg ; 17(3): 140-4, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21783074

RESUMO

BACKGROUND: Football players wear boots of varying cleat designs with some preferring the bladed cleats while others opting for the conventional studded cleats. The current study compares biomechanically the boots with differing cleat designs and their effect on feet, if any. METHODS: Twenty-nine healthy male volunteers were recruited from amateur football teams. They were asked to perform three trials each of two activities: a straight run and a run cutting at a 60° angle wearing bladed and studded Adidas®-F series boots on artificial turf. Plantar pressure values were recorded using the Pedar®-X in-shoe pressure measuring device. Peak pressure and pressure-time integral were analysed over 11 clinically relevant areas under the foot. RESULTS: While the in-shoe pressure and pressure-time integral were higher under the medial half of the foot with studded boots, they were higher under the lateral half of the foot with the bladed design. CONCLUSIONS: The studded boots can be considered safer as the pressure distribution across the foot and the pattern of centre of pressure progression mimicked the normal motif, whereas the bladed boots could potentially be deemed relatively more harmful due to the unnatural increased loading under the lateral half of the foot, predisposing the foot to injuries.


Assuntos
Sapatos/efeitos adversos , Futebol/lesões , Fenômenos Biomecânicos , Humanos , Masculino
17.
Foot Ankle Surg ; 17(4): 218-23, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22017890

RESUMO

BACKGROUND: The lateral ligament injury of the ankle is acknowledged to be the most common ankle injury sustained in sport. Increased peroneus longus muscle contraction in the shod population has already been documented. This study aimed to quantify the effect of shoe sole's varying thickness on peroneus longus muscle activity. METHODS: Electromyographic recordings of the peroneus longus muscle activity following unanticipated inversion of the foot from 0° to 20° in a two-footplate tilting platform were collected from 38 healthy participants. The four test conditions were: barefoot, standard shoe, and shoes with 2.5 cm and 5 cm sole adaptation respectively. RESULTS: Compared to the barefoot condition, there is an increase in the magnitude of muscle contraction on wearing shoes, which further increases with thickening shoe soles. The peroneus longus was responding earlier in the shod conditions when compared to the barefoot, although the results were variable within the three shod conditions. CONCLUSION: Footwear with increasing shoe sole thickness evokes a correspondingly stronger protective eversion response from the peroneus longus to counter the increasing moment at the ankle-subtalar joint complex following sudden foot inversion. Hence, fashion footwear with thicker sole is likely to increase the risk of lateral ligament injury of the ankle when such protective response is overwhelmed. Similarly, the clinicians need to be cautious regarding the amount of shoe raise that they could provide for patients with limb length discrepancy without any detrimental untoward side effects.


Assuntos
Extremidade Inferior/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Sapatos , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Pé/fisiologia , Humanos , Masculino
18.
Environ Geochem Health ; 32(2): 129-46, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19551476

RESUMO

Arsenic contamination in groundwater is of increasing concern because of its high toxicity and widespread occurrence. This study is an effort to trace the factors responsible for arsenic enrichment in groundwater of the middle Gangetic Plain of India through major ion chemistry, arsenic speciation, sediment grain-size analyses, and multivariate statistical techniques. The study focuses on the distinction between the contributions of natural weathering and anthropogenic inputs of arsenic with its spatial distribution and seasonal variations in the plain of the state Bihar of India. Thirty-six groundwater and one sediment core samples were collected in the pre-monsoon and post-monsoon seasons. Various graphical plots and statistical analysis were carried out using chemical data to enable hydrochemical evaluation of the aquifer system based on the ionic constituents, water types, hydrochemical facies, and factors controlling groundwater quality. Results suggest that the groundwater is characterized by slightly alkaline pH with moderate to strong reducing nature. The general trend of various ions was found to be Ca(2+) > Na(+) > Mg(2+) > K(+) > NH(4) (+); and HCO(3) (-) > Cl(-) > SO(4) (2-) > NO(3) (-) > PO(4) (3-) > F(-) in both seasons. Spatial and temporal variations showed a slightly higher arsenic concentration in the pre-monsoon period (118 microg/L) than in the post-monsoon period (114 microg/L). Results of correlation analyses indicate that arsenic contamination is strongly associated with high concentrations of Fe, PO(4) (3-), and NH(4) (+) but relatively low Mn concentrations. Further, the enrichment of arsenic is more prevalent in the proximity of the Ganges River, indicating that fluvial input is the main source of arsenic. Grain size analyses of sediment core samples revealed clay (fine-grained) strata between 4.5 and 7.5 m deep that govern the vertical distribution of arsenic. The weathering of carbonate and silicate minerals along with surface-groundwater interactions, ion exchange, and anthropogenic activities seem to be the processes governing groundwater contamination, including with arsenic. Although the percentage of wells exceeding the permissible limit (50 microg/L) was less (47%) than that reported in Bangladesh and West Bengal, the percentage contribution of toxic As(III) to total arsenic concentration is quite high (66%). This study is vital considering that groundwater is the exclusive source of drinking water in the region and not only makes situation alarming but also calls for immediate attention.


Assuntos
Arsênio/análise , Monitoramento Ambiental , Água Doce/química , Poluentes Químicos da Água/análise , Geografia , Sedimentos Geológicos/química , Fenômenos Geológicos , Índia , Cinética , Tamanho da Partícula , Estações do Ano , Poluentes do Solo/análise
19.
Foot Ankle Surg ; 16(2): 70-3, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20483137

RESUMO

BACKGROUND: The Pedar-X is one of the newer versions of in-shoe pressure measuring devices and the current study aimed to assess the repeatability of this device. METHODS: Twenty-seven healthy male volunteers were recruited and requested to walk on a 26-feet walkway wearing appropriate sized standardised off-the-shelf neutral running shoes (Donnay International). The Pedar-X insole was sandwiched between the foot and the shoe. Data were collected on two occasions, one week apart. Clinically relevant parameters studied were contact area, contact time in percentage roll over process, maximum force, pressure-time integral, force-time integral, peak pressure, mean force and mean area. RESULTS: Repeatability was analysed using the coefficient of variation. Of the 160 parameters considered, 93.1% revealed a coefficient of variation value of less than 25. Heel and the metatarsal head areas were the most repeatable. CONCLUSION: The Pedar-X in-shoe pressure measuring system is repeatable and as such can be used as a valuable tool in the assessment of in-shoe plantar pressure distribution.


Assuntos
Pé/fisiologia , Monitorização Ambulatorial/instrumentação , Pressão , Sapatos , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Desenho de Equipamento , Humanos , Masculino , Valores de Referência , Reprodutibilidade dos Testes , Adulto Jovem
20.
Vet World ; 13(1): 121-126, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32158161

RESUMO

AIM: This study was aimed to investigate antimicrobial and cytotoxicity effect of nano ZnO in in vitro for the application of livestock feed supplement. MATERIALS AND METHODS: Nano ZnO was synthesized by wet chemical precipitation method using zinc acetate as a precursor and sodium hydroxide was used for reducing the precursor salt. The properties of synthesized powder were characterized using ultraviolet (UV)-visible spectroscopy, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. In vitro antimicrobial activities were analyzed against the pathogenic bacteria in poultry Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Streptococcus aeruginosa. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was conducted to analyze the cytotoxicity effect of nano ZnO. RESULTS: SEM showed a spherical ZnO particle in the range of 70-100 nm. The size of the particle and purity of the sample were confirmed by XRD. The nano-sized ZnO particles exhibited the UV absorption peak at 335 nm. In FTIR spectroscopy, pure ZnO nanoparticles showed stretching vibrations at 4000-5000 cm-1. ZnO nanoparticles exhibited remarkable antibacterial activity against E. coli, S. aureus, K. pneumoniae, and S. aeruginosa bacterial strains. Cell viability was significantly reduced in a dose-dependent manner in the cytotoxicity study. CONCLUSION: From the broad-spectrum antibacterial activity and the lower cytotoxicity observed at the prescribed dose, it is concluded that nano ZnO powder is a potential alternate zinc supplement for livestock.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA