Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38487848

RESUMO

The major histocompatibility complex (MHC) encodes a range of immune response genes, including the human leukocyte antigens (HLAs) in humans. These molecules bind peptide antigens and present them on the cell surface for T cell recognition. The repertoires of peptides presented by HLA molecules are termed immunopeptidomes. The highly polymorphic nature of the genres that encode the HLA molecules confers allotype-specific differences in the sequences of bound ligands. Allotype-specific ligand preferences are often defined by peptide-binding motifs. Individuals express up to six classical class I HLA allotypes, which likely present peptides displaying different binding motifs. Such complex datasets make the deconvolution of immunopeptidomic data into allotype-specific contributions and further dissection of binding-specificities challenging. Herein, we developed MHCpLogics as an interactive machine learning-based tool for mining peptide-binding sequence motifs and visualization of immunopeptidome data across complex datasets. We showcase the functionalities of MHCpLogics by analyzing both in-house and published mono- and multi-allelic immunopeptidomics data. The visualization modalities of MHCpLogics allow users to inspect clustered sequences down to individual peptide components and to examine broader sequence patterns within multiple immunopeptidome datasets. MHCpLogics can deconvolute large immunopeptidome datasets enabling the interrogation of clusters for the segregation of allotype-specific peptide sequence motifs, identification of sub-peptidome motifs, and the exportation of clustered peptide sequence lists. The tool facilitates rapid inspection of immunopeptidomes as a resource for the immunology and vaccine communities. MHCpLogics is a standalone application available via an executable installation at: https://github.com/PurcellLab/MHCpLogics.


Assuntos
Visualização de Dados , Peptídeos , Humanos , Peptídeos/química , Antígenos HLA/genética , Antígenos de Histocompatibilidade , Aprendizado de Máquina , Análise por Conglomerados
2.
Mol Cell Proteomics ; 22(4): 100515, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796644

RESUMO

Immunopeptidomes are the peptide repertoires bound by the molecules encoded by the major histocompatibility complex [human leukocyte antigen (HLA) in humans]. These HLA-peptide complexes are presented on the cell surface for immune T-cell recognition. Immunopeptidomics denotes the utilization of tandem mass spectrometry to identify and quantify peptides bound to HLA molecules. Data-independent acquisition (DIA) has emerged as a powerful strategy for quantitative proteomics and deep proteome-wide identification; however, DIA application to immunopeptidomics analyses has so far seen limited use. Further, of the many DIA data processing tools currently available, there is no consensus in the immunopeptidomics community on the most appropriate pipeline(s) for in-depth and accurate HLA peptide identification. Herein, we benchmarked four commonly used spectral library-based DIA pipelines developed for proteomics applications (Skyline, Spectronaut, DIA-NN, and PEAKS) for their ability to perform immunopeptidome quantification. We validated and assessed the capability of each tool to identify and quantify HLA-bound peptides. Generally, DIA-NN and PEAKS provided higher immunopeptidome coverage with more reproducible results. Skyline and Spectronaut conferred more accurate peptide identification with lower experimental false-positive rates. All tools demonstrated reasonable correlations in quantifying precursors of HLA-bound peptides. Our benchmarking study suggests a combined strategy of applying at least two complementary DIA software tools to achieve the greatest degree of confidence and in-depth coverage of immunopeptidome data.


Assuntos
Benchmarking , Peptídeos , Humanos , Peptídeos/análise , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem , Antígenos de Histocompatibilidade Classe II
3.
PLoS Pathog ; 17(11): e1010033, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780568

RESUMO

Contagious cancers are a rare pathogenic phenomenon in which cancer cells gain the ability to spread between genetically distinct hosts. Nine examples have been identified across marine bivalves, dogs and Tasmanian devils, but the Tasmanian devil is the only mammalian species known to have given rise to two distinct lineages of contagious cancer, termed Devil Facial Tumour 1 (DFT1) and 2 (DFT2). Remarkably, DFT1 and DFT2 arose independently from the same cell type, a Schwann cell, and while their ultra-structural features are highly similar they exhibit variation in their mutational signatures and infection dynamics. As such, DFT1 and DFT2 provide a unique framework for investigating how a common progenitor cell can give rise to distinct contagious cancers. Using a proteomics approach, we show that DFT1 and DFT2 are derived from Schwann cells in different differentiation states, with DFT2 carrying a molecular signature of a less well differentiated Schwann cell. Under inflammatory signals DFT1 and DFT2 have different gene expression profiles, most notably involving Schwann cell markers of differentiation, reflecting the influence of their distinct origins. Further, DFT2 cells express immune cell markers typically expressed during nerve repair, consistent with an ability to manipulate their extracellular environment, facilitating the cell's ability to transmit between individuals. The emergence of two contagious cancers in the Tasmanian devil suggests that the inherent plasticity of Schwann cells confers a vulnerability to the formation of contagious cancers.


Assuntos
Doenças dos Animais/patologia , Diferenciação Celular , Doenças Transmissíveis/patologia , Neoplasias Faciais/veterinária , Regulação Neoplásica da Expressão Gênica , Proteoma/metabolismo , Células de Schwann/patologia , Doenças dos Animais/genética , Doenças dos Animais/metabolismo , Animais , Variação Biológica da População , Doenças Transmissíveis/genética , Doenças Transmissíveis/metabolismo , Neoplasias Faciais/classificação , Perfilação da Expressão Gênica , Marsupiais , Proteoma/análise , Células de Schwann/metabolismo , Transcriptoma
4.
Nature ; 545(7653): 243-247, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28467828

RESUMO

Susceptibility and protection against human autoimmune diseases, including type I diabetes, multiple sclerosis, and Goodpasture disease, is associated with particular human leukocyte antigen (HLA) alleles. However, the mechanisms underpinning such HLA-mediated effects on self-tolerance remain unclear. Here we investigate the molecular mechanism of Goodpasture disease, an HLA-linked autoimmune renal disorder characterized by an immunodominant CD4+ T-cell self-epitope derived from the α3 chain of type IV collagen (α3135-145). While HLA-DR15 confers a markedly increased disease risk, the protective HLA-DR1 allele is dominantly protective in trans with HLA-DR15 (ref. 2). We show that autoreactive α3135-145-specific T cells expand in patients with Goodpasture disease and, in α3135-145-immunized HLA-DR15 transgenic mice, α3135-145-specific T cells infiltrate the kidney and mice develop Goodpasture disease. HLA-DR15 and HLA-DR1 exhibit distinct peptide repertoires and binding preferences and present the α3135-145 epitope in different binding registers. HLA-DR15-α3135-145 tetramer+ T cells in HLA-DR15 transgenic mice exhibit a conventional T-cell phenotype (Tconv) that secretes pro-inflammatory cytokines. In contrast, HLA-DR1-α3135-145 tetramer+ T cells in HLA-DR1 and HLA-DR15/DR1 transgenic mice are predominantly CD4+Foxp3+ regulatory T cells (Treg cells) expressing tolerogenic cytokines. HLA-DR1-induced Treg cells confer resistance to disease in HLA-DR15/DR1 transgenic mice. HLA-DR15+ and HLA-DR1+ healthy human donors display altered α3135-145-specific T-cell antigen receptor usage, HLA-DR15-α3135-145 tetramer+ Foxp3- Tconv and HLA-DR1-α3135-145 tetramer+ Foxp3+CD25hiCD127lo Treg dominant phenotypes. Moreover, patients with Goodpasture disease display a clonally expanded α3135-145-specific CD4+ T-cell repertoire. Accordingly, we provide a mechanistic basis for the dominantly protective effect of HLA in autoimmune disease, whereby HLA polymorphism shapes the relative abundance of self-epitope specific Treg cells that leads to protection or causation of autoimmunity.


Assuntos
Doença Antimembrana Basal Glomerular/imunologia , Autoimunidade/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doença Antimembrana Basal Glomerular/patologia , Sequência de Bases , Linfócitos T CD4-Positivos/imunologia , Colágeno Tipo IV/química , Colágeno Tipo IV/imunologia , Citocinas/imunologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Subtipos Sorológicos de HLA-DR/imunologia , Antígeno HLA-DR1/imunologia , Humanos , Epitopos Imunodominantes , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares
5.
Mol Cell Proteomics ; 20: 100143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34509645

RESUMO

Human leukocyte antigen (HLA) molecules are cell-surface glycoproteins that present peptide antigens on the cell surface for surveillance by T lymphocytes, which contemporaneously seek signs of disease. Mass spectrometric analysis allows us to identify large numbers of these peptides (the immunopeptidome) following affinity purification of solubilized HLA-peptide complexes. However, in recent years, there has been a growing awareness of the "dark side" of the immunopeptidome: unconventional peptide epitopes, including neoepitopes, which elude detection by conventional search methods because their sequences are not present in reference protein databases (DBs). Here, we establish a bioinformatics workflow to aid identification of peptides generated by noncanonical translation of mRNA or by genome variants. The workflow incorporates both standard transcriptomics software and novel computer programs to produce cell line-specific protein DBs based on three-frame translation of the transcriptome. The final protein DB also includes sequences resulting from variants determined by variant calling on the same RNA-Seq data. We then searched our experimental data against both transcriptome-based and standard DBs using PEAKS Studio (Bioinformatics Solutions, Inc). Finally, further novel software helps to compare the various result sets arising for each sample, pinpoint putative genomic origins for unconventional sequences, and highlight potential neoepitopes. We applied the workflow to study the immunopeptidome of the acute myeloid leukemia cell line THP-1, using RNA-Seq and immunopeptidome data. We confidently identified over 14,000 peptides from three replicates of purified HLA peptides derived from THP-1 cells using the conventional UniProt human proteome. Using the transcriptome-based DB generated using our workflow, we recapitulated >85% of these and also identified 1029 unconventional peptides not explained by UniProt, including 16 sequences caused by nonsynonymous variants. Our workflow, which we term "immunopeptidogenomics," can provide DBs, which include pertinent unconventional sequences and allow neoepitope discovery, without becoming too large to search. Immunopeptidogenomics is a step toward unbiased search approaches that are needed to illuminate the dark side of the immunopeptidome.


Assuntos
Bases de Dados de Proteínas , Antígenos HLA/metabolismo , Peptídeos/metabolismo , Fluxo de Trabalho , Epitopos , Genômica , Antígenos HLA/genética , Humanos , Peptídeos/genética , Proteoma , RNA-Seq , Software , Células THP-1 , Transcriptoma
6.
J Immunol ; 205(1): 290-299, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32482711

RESUMO

The ability to predict and/or identify MHC binding peptides is an essential component of T cell epitope discovery, something that ultimately should benefit the development of vaccines and immunotherapies. In particular, MHC class I prediction tools have matured to a point where accurate selection of optimal peptide epitopes is possible for virtually all MHC class I allotypes; in comparison, current MHC class II (MHC-II) predictors are less mature. Because MHC-II restricted CD4+ T cells control and orchestrated most immune responses, this shortcoming severely hampers the development of effective immunotherapies. The ability to generate large panels of peptides and subsequently large bodies of peptide-MHC-II interaction data are key to the solution of this problem, a solution that also will support the improvement of bioinformatics predictors, which critically relies on the availability of large amounts of accurate, diverse, and representative data. In this study, we have used rHLA-DRB1*01:01 and HLA-DRB1*03:01 molecules to interrogate high-density peptide arrays, in casu containing 70,000 random peptides in triplicates. We demonstrate that the binding data acquired contains systematic and interpretable information reflecting the specificity of the HLA-DR molecules investigated, suitable of training predictors able to predict T cell epitopes and peptides eluted from human EBV-transformed B cells. Collectively, with a cost per peptide reduced to a few cents, combined with the flexibility of rHLA technology, this poses an attractive strategy to generate vast bodies of MHC-II binding data at an unprecedented speed and for the benefit of generating peptide-MHC-II binding data as well as improving MHC-II prediction tools.


Assuntos
Mapeamento de Epitopos/métodos , Antígenos HLA-DR/metabolismo , Peptídeos/metabolismo , Análise Serial de Proteínas , Linfócitos B/imunologia , Linfócitos B/virologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Estudos de Viabilidade , Antígenos HLA-DR/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Peptídeos/imunologia , Ligação Proteica
7.
Mol Cell Proteomics ; 19(7): 1236-1247, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32357974

RESUMO

The presentation of post-translationally modified (PTM) peptides by cell surface HLA molecules has the potential to increase the diversity of targets for surveilling T cells. Although immunopeptidomics studies routinely identify thousands of HLA-bound peptides from cell lines and tissue samples, in-depth analyses of the proportion and nature of peptides bearing one or more PTMs remains challenging. Here we have analyzed HLA-bound peptides from a variety of allotypes and assessed the distribution of mass spectrometry-detected PTMs, finding deamidation of asparagine or glutamine to be highly prevalent. Given that asparagine deamidation may arise either spontaneously or through enzymatic reaction, we assessed allele-specific and global motifs flanking the modified residues. Notably, we found that the N-linked glycosylation motif NX(S/T) was highly abundant across asparagine-deamidated HLA-bound peptides. This finding, demonstrated previously for a handful of deamidated T cell epitopes, implicates a more global role for the retrograde transport of nascently N-glycosylated polypeptides from the ER and their subsequent degradation within the cytosol to form HLA-ligand precursors. Chemical inhibition of Peptide:N-Glycanase (PNGase), the endoglycosidase responsible for the removal of glycans from misfolded and retrotranslocated glycoproteins, greatly reduced presentation of this subset of deamidated HLA-bound peptides. Importantly, there was no impact of PNGase inhibition on peptides not containing a consensus NX(S/T) motif. This indicates that a large proportion of HLA-I bound asparagine deamidated peptides are generated from formerly glycosylated proteins that have undergone deglycosylation via the ER-associated protein degradation (ERAD) pathway. The information herein will help train deamidation prediction models for HLA-peptide repertoires and aid in the design of novel T cell therapeutic targets derived from glycoprotein antigens.


Assuntos
Asparagina/metabolismo , Glicoproteínas/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Motivos de Aminoácidos , Linhagem Celular , Cromatografia Líquida , Desaminação , Degradação Associada com o Retículo Endoplasmático , Epitopos de Linfócito T/metabolismo , Glicosilação , Humanos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/antagonistas & inibidores , Processamento de Proteína Pós-Traducional , Proteômica , Espectrometria de Massas em Tandem
8.
Proteomics ; 21(17-18): e2000160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34357683

RESUMO

Human leucocyte antigen (HLA) class II molecules in humans are encoded by three different loci, HLA-DR, -DQ, and -DP. These molecules share approximately 70% sequence similarity and all present peptide ligands to circulating T cells. While the peptide repertoires of numerous HLA-DR, -DQ, and -DP allotypes have been examined, there have been few reports on the combined repertoire of these co-inherited molecules expressed in a single cell as an extended HLA haplotype. Here we describe the endogenous peptide repertoire of a human B lymphoblastoid cell line (C1R) expressing the class II haplotype HLA-DR12/DQ7/DP4. We have identified 71350 unique naturally processed peptides presented collectively by HLA-DR12, HLA-DQ7, or HLA-DP4. The resulting "haplodome" is complemented by the cellular proteome defined by standard LC-MS/MS approaches. This large dataset has shed light on properties of these class II ligands especially the preference for membrane and extracellular source proteins. Our data also provides insights into the co-evolution of these conserved haplotypes of closely linked and co-inherited HLA molecules; which together increase sequence coverage of cellular proteins for immune surveillance with minimal overlap between each co-inherited HLA-class II allomorph.


Assuntos
Antígenos HLA-DQ , Proteoma , Cromatografia Líquida , Antígenos HLA-DQ/genética , Haplótipos , Antígenos de Histocompatibilidade Classe II , Humanos , Monitorização Imunológica , Espectrometria de Massas em Tandem
9.
Proteomics ; 21(17-18): e2100036, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33811468

RESUMO

SARS-CoV-2 has caused a significant ongoing pandemic worldwide. A number of studies have examined the T cell mediated immune responses against SARS-CoV-2, identifying potential T cell epitopes derived from the SARS-CoV-2 proteome. Such studies will aid in identifying targets for vaccination and immune monitoring. In this study, we applied tandem mass spectrometry and proteomic techniques to a library of ∼40,000 synthetic peptides, in order to generate a large dataset of SARS-CoV-2 derived peptide MS/MS spectra. On this basis, we built an online knowledgebase, termed virusMS (https://virusms.erc.monash.edu/), to document, annotate and analyse these synthetic peptides and their spectral information. VirusMS incorporates a user-friendly interface to facilitate searching, browsing and downloading the database content. Detailed annotations of the peptides, including experimental information, peptide modifications, predicted peptide-HLA (human leukocyte antigen) binding affinities, and peptide MS/MS spectral data, are provided in virusMS.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Peptídeos , Proteômica , Espectrometria de Massas em Tandem
10.
Immunology ; 163(2): 169-184, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33460454

RESUMO

Transmissible cancers are malignant cells that can spread between individuals of a population, akin to both a parasite and a mobile graft. The survival of the Tasmanian devil, the largest remaining marsupial carnivore, is threatened by the remarkable emergence of two independent lineages of transmissible cancer, devil facial tumour (DFT) 1 and devil facial tumour 2 (DFT2). To aid the development of a vaccine and to interrogate how histocompatibility barriers can be overcome, we analysed the peptides bound to major histocompatibility complex class I (MHC-I) molecules from Tasmanian devil cells and representative cell lines of each transmissible cancer. Here, we show that DFT1 + IFN-γ and DFT2 cell lines express a restricted repertoire of MHC-I allotypes compared with fibroblast cells, potentially reducing the breadth of peptide presentation. Comparison of the peptidomes from DFT1 + IFNγ, DFT2 and host fibroblast cells demonstrates a dominant motif, despite differences in MHC-I allotypes between the cell lines, with preference for a hydrophobic leucine residue at position 3 and position Ω of peptides. DFT1 and DFT2 both present peptides derived from neural proteins, which reflects a shared cellular origin that could be exploited for vaccine design. These results suggest that polymorphisms in MHC-I molecules between tumours and host can be 'hidden' by a common peptide motif, providing the potential for permissive passage of infectious cells and demonstrating complexity in mammalian histocompatibility barriers.


Assuntos
Antígenos de Neoplasias/metabolismo , Vacinas Anticâncer/imunologia , Neoplasias Faciais/imunologia , Imunoterapia/métodos , Marsupiais/imunologia , Células Neoplásicas Circulantes/patologia , Peptídeos/metabolismo , Motivos de Aminoácidos/genética , Animais , Apresentação de Antígeno , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Histocompatibilidade , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos/genética , Polimorfismo Genético , Ligação Proteica
11.
J Biol Chem ; 293(9): 3236-3251, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29317506

RESUMO

The HLA-DRB1 locus is strongly associated with rheumatoid arthritis (RA) susceptibility, whereupon citrullinated self-peptides bind to HLA-DR molecules bearing the shared epitope (SE) amino acid motif. However, the differing propensity for citrullinated/non-citrullinated self-peptides to bind given HLA-DR allomorphs remains unclear. Here, we used a fluorescence polarization assay to determine a hierarchy of binding affinities of 34 self-peptides implicated in RA against three HLA-DRB1 allomorphs (HLA-DRB1*04:01/*04:04/*04:05) each possessing the SE motif. For all three HLA-DRB1 allomorphs, we observed a strong correlation between binding affinity and citrullination at P4 of the bound peptide ligand. A differing hierarchy of peptide-binding affinities across the three HLA-DRB1 allomorphs was attributable to the ß-chain polymorphisms that resided outside the SE motif and were consistent with sequences of naturally presented peptide ligands. Structural determination of eight HLA-DR4-self-epitope complexes revealed strict conformational convergence of the P4-Cit and surrounding HLA ß-chain residues. Polymorphic residues that form part of the P1 and P9 pockets of the HLA-DR molecules provided a structural basis for the preferential binding of the citrullinated self-peptides to the HLA-DR4 allomorphs. Collectively, we provide a molecular basis for the interplay between citrullination of self-antigens and HLA polymorphisms that shape peptide-HLA-DR4 binding affinities in RA.


Assuntos
Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Citrulinação , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/metabolismo , Peptídeos/metabolismo , Polimorfismo Genético , Sequência de Aminoácidos , Artrite Reumatoide/imunologia , Autoantígenos/química , Autoantígenos/metabolismo , Citrulina/metabolismo , Cadeias HLA-DRB1/química , Humanos , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Conformação Proteica em Folha beta , Especificidade por Substrato
12.
Immunogenetics ; 71(7): 445-454, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31183519

RESUMO

Major histocompatibility complex (MHC) class II antigen presentation is a key component in eliciting a CD4+ T cell response. Precise prediction of peptide-MHC (pMHC) interactions has thus become a cornerstone in defining epitope candidates for rational vaccine design. Current pMHC prediction tools have, so far, primarily focused on inference from in vitro binding affinity. In the current study, we collate a large set of MHC class II eluted ligands generated by mass spectrometry to guide the prediction of MHC class II antigen presentation. We demonstrate that models developed on eluted ligands outperform those developed on pMHC binding affinity data. The predictive performance can be further enhanced by combining the eluted ligand and pMHC affinity data in a single prediction model. Furthermore, by including ligand data, the peptide length preference of MHC class II can be accurately learned by the prediction model. Finally, we demonstrate that our model significantly outperforms the current state-of-the-art prediction method, NetMHCIIpan, on an external dataset of eluted ligands and appears superior in identifying CD4+ T cell epitopes.


Assuntos
Biologia Computacional/métodos , Antígenos de Histocompatibilidade Classe II/metabolismo , Peptídeos/metabolismo , Apresentação de Antígeno , Bases de Dados de Proteínas , Epitopos de Linfócito T , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Ligantes , Ligação Proteica , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
13.
Proteomics ; 18(12): e1700253, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437277

RESUMO

The recognition of pathogen-derived peptides by T lymphocytes is the cornerstone of adaptive immunity, whereby intracellular antigens are degraded in the cytosol and short peptides assemble with class I human leukocyte antigen (HLA) molecules in the ER. These peptide-HLA complexes egress to the cell surface and are scrutinized by cytotoxic CD8+ T-cells leading to the eradication of the infected cell. Here, naturally presented HLA-B*57:01 bound peptides derived from the envelope protein of the human immunodeficiency virus (HIVenv) are identified. HIVenv peptides are present at a very small percentage of the overall HLA-B*57:01 peptidome (<0.1%) and both native and posttranslationally modified forms of two distinct HIV peptides are identified. Notably, a peptide bearing a natively encoded C-terminal tryptophan residue is also present in a modified form containing a kynurenine residue. Kynurenine is a major product of tryptophan catabolism and is abundant during inflammation and infection. Binding of these peptides at a molecular level and their immunogenicity in preliminary functional studies are examined. Modest immune responses are observed to the modified HIVenv peptide, highlighting a potential role for kynurenine-modified peptides in the immune response to HIV and other viral infections.


Assuntos
Linfócitos B/imunologia , Epitopos/imunologia , Produtos do Gene env/imunologia , Antígenos HIV/imunologia , HIV-1/imunologia , Antígenos HLA-B/imunologia , Processamento de Proteína Pós-Traducional , Linfócitos B/virologia , Células Cultivadas , Epitopos/metabolismo , Produtos do Gene env/metabolismo , Antígenos HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Antígenos HLA-B/química , Antígenos HLA-B/metabolismo , Humanos
14.
Expert Rev Proteomics ; 15(8): 637-645, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080115

RESUMO

INTRODUCTION: Our immune system discriminates self from non-self by examining the peptide cargo of human leukocyte antigen (HLA) molecules displayed on the cell surface. Successful recognition of HLA-bound non-self peptides can induce T cell responses leading to, for example, the destruction of infected cells. Today, largely due to advances in technology, we have an unprecedented capability to identify the nature of these presented peptides and unravel the true complexity of antigen presentation. Areas covered: In addition to conventional linear peptides, HLA molecules also present post-translationally modified sequences comprising a wealth of chemical and structural modifications, including a novel class of noncontiguous spliced peptides. This review focuses on these emerging themes in antigen presentation and how mass spectrometry in particular has contributed to a new view of the antigenic landscape that is presented to the immune system. Expert Commentary: Advances in the sensitivity of mass spectrometers and use of hybrid fragmentation technologies will provide more information-rich spectra of HLA bound peptides leading to more definitive identification of T cell epitopes. Coupled with improvements in sample preparation and new informatics workflows, studies will access novel classes of peptide antigen and allow interrogation of rare and clinically relevant samples.


Assuntos
Apresentação de Antígeno/imunologia , Proteômica/métodos , Processamento Alternativo , Animais , Antígenos HLA/imunologia , Humanos , Peptídeos/química , Processamento de Proteína Pós-Traducional
16.
Front Oncol ; 13: 1192448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637064

RESUMO

Introduction: Diffuse intrinsic pontine glioma (DIPG), recently reclassified as a subtype of diffuse midline glioma, is a highly aggressive brainstem tumor affecting children and young adults, with no cure and a median survival of only 9 months. Conventional treatments are ineffective, highlighting the need for alternative therapeutic strategies such as cellular immunotherapy. However, identifying unique and tumor-specific cell surface antigens to target with chimeric antigen receptor (CAR) or T-cell receptor (TCR) therapies is challenging. Methods: In this study, a multi-omics approach was used to interrogate patient-derived DIPG cell lines and to identify potential targets for immunotherapy. Results: Through immunopeptidomics, a range of targetable peptide antigens from cancer testis and tumor-associated antigens as well as peptides derived from human endogenous retroviral elements were identified. Proteomics analysis also revealed upregulation of potential drug targets and cell surface proteins such as Cluster of differentiation 27 (CD276) B7 homolog 3 protein (B7H3), Interleukin 13 alpha receptor 2 (IL-13Rα2), Human Epidermal Growth Factor Receptor 3 (HER2), Ephrin Type-A Receptor 2 (EphA2), and Ephrin Type-A Receptor 3 (EphA3). Discussion: The results of this study provide a valuable resource for the scientific community to accelerate immunotherapeutic approaches for DIPG. Identifying potential targets for CAR and TCR therapies could open up new avenues for treating this devastating disease.

17.
Mol Ther Oncolytics ; 30: 167-180, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37674626

RESUMO

Diffuse midline glioma (DMG) is a childhood brain tumor with an extremely poor prognosis. Chimeric antigen receptor (CAR) T cell therapy has recently demonstrated some success in DMG, but there may a need to target multiple tumor-specific targets to avoid antigen escape. We developed a second-generation CAR targeting an HLA-A∗02:01 restricted histone 3K27M epitope in DMG, the target of previous peptide vaccination and T cell receptor-mimics. These CAR T cells demonstrated specific, titratable, binding to cells pulsed with the H3.3K27M peptide. However, we were unable to observe scFv binding, CAR T cell activation, or cytotoxic function against H3.3K27M+ patient-derived models. Despite using sensitive immunopeptidomics, we could not detect the H3.3K27M26-35-HLA-A∗02:01 peptide on these patient-derived models. Interestingly, other non-mutated peptides from DMG were detected bound to HLA-A∗02:01 and other class I molecules, including a novel HLA-A3-restricted peptide encompassing the K27M mutation and overlapping with the H3 K27M26-35-HLA-A∗02:01 peptide. These results suggest that targeting the H3 K27M26-35 mutation in context of HLA-A∗02:01 may not be a feasible immunotherapy strategy because of its lack of presentation. These findings should inform future investigations and clinical trials in DMG.

18.
Comput Struct Biotechnol J ; 21: 1678-1687, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890882

RESUMO

Immunopeptidomics has made tremendous contributions to our understanding of antigen processing and presentation, by identifying and quantifying antigenic peptides presented on the cell surface by Major Histocompatibility Complex (MHC) molecules. Large and complex immunopeptidomics datasets can now be routinely generated using Liquid Chromatography-Mass Spectrometry techniques. The analysis of this data - often consisting of multiple replicates/conditions - rarely follows a standard data processing pipeline, hindering the reproducibility and depth of analysis of immunopeptidomic data. Here, we present Immunolyser, an automated pipeline designed to facilitate computational analysis of immunopeptidomic data with a minimal initial setup. Immunolyser brings together routine analyses, including peptide length distribution, peptide motif analysis, sequence clustering, peptide-MHC binding affinity prediction, and source protein analysis. Immunolyser provides a user-friendly and interactive interface via its webserver and is freely available for academic purposes at https://immunolyser.erc.monash.edu/. The open-access source code can be downloaded at our GitHub repository: https://github.com/prmunday/Immunolyser. We anticipate that Immunolyser will serve as a prominent computational pipeline to facilitate effortless and reproducible analysis of immunopeptidomic data.

19.
Proc Natl Acad Sci U S A ; 106(8): 2776-81, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19196958

RESUMO

Human leukocyte antigen (HLA) class I molecules present a variety of posttranslationally modified epitopes at the cell surface, although the consequences of such presentation remain largely unclear. Phosphorylation plays a critical cellular role, and deregulation in phosphate metabolism is associated with disease, including autoimmunity and tumor immunity. We have solved the high-resolution structures of 3 HLA A2-restricted phosphopeptides associated with tumor immunity and compared them with the structures of their nonphosphorylated counterparts. Phosphorylation of the epitope was observed to affect the structure and mobility of the bound epitope. In addition, the phosphoamino acid stabilized the HLA peptide complex in an epitope-specific manner and was observed to exhibit discrete flexibility within the antigen-binding cleft. Collectively, our data suggest that phosphorylation generates neoepitopes that represent demanding targets for T-cell receptor ligation. These findings provide insights into the mode of phosphopeptide presentation by HLA as well as providing a platform for the rational design of a generation of posttranslationally modified tumor vaccines.


Assuntos
Epitopos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Peptídeos/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Peptídeos/química , Peptídeos/imunologia , Fosforilação , Conformação Proteica
20.
Curr Opin Immunol ; 77: 102216, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716458

RESUMO

Human leucocyte antigen (HLA) molecules play a key role in health and disease by presenting antigen to T-lymphocytes for immunosurveillance. Immunopeptidomics involves the study of the collection of peptides presented within the antigen-binding groove of HLA molecules. Identifying their nature and diversity is crucial to understanding immunosurveillance especially during infection or for the recognition and potential eradication of tumours. This review discusses recent advances in the isolation, identification, and quantitation of these peptide antigens. New informatics approaches and databases have shed light on the extent of peptide antigens derived from unconventional sources including peptides derived from transcripts associated with frame shifts, long noncoding RNA, incorrectly annotated untranslated regions, post-translational modifications, and proteasomal splicing. Several challenges remain in successful analysis of immunopeptides, yet recent developments point to unexplored biology waiting to be unravelled.


Assuntos
Antígenos de Histocompatibilidade Classe II , Antígenos de Histocompatibilidade Classe I , Antígenos , Antígenos HLA , Humanos , Peptídeos , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA