Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.005
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(12): 3125-3142.e25, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33930289

RESUMO

The N6-methyladenosine (m6A) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an m6A mark on the 3' splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production. The mechanism is triggered by a rich diet and acts as an m6A-mediated switch to stop SAM production and regulate its homeostasis. Although the mammalian SAM synthetase pre-mRNA is not regulated via this mechanism, we show that splicing inhibition by 3' splice site m6A is conserved in mammals. The modification functions by physically preventing the essential splicing factor U2AF35 from recognizing the 3' splice site. We propose that use of splice-site m6A is an ancient mechanism for splicing regulation.


Assuntos
Adenosina/análogos & derivados , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Fator de Processamento U2AF/metabolismo , Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Sequência Conservada/genética , Dieta , Células HeLa , Humanos , Íntrons/genética , Metionina Adenosiltransferase , Metilação , Metiltransferases/química , Camundongos , Mutação/genética , Conformação de Ácido Nucleico , Ligação Proteica , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno , S-Adenosilmetionina , Transcriptoma/genética
2.
Cell ; 181(7): 1489-1501.e15, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32473127

RESUMO

Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/imunologia , Epitopos de Linfócito T , Pneumonia Viral/imunologia , Betacoronavirus/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19 , Vacinas contra COVID-19 , Convalescença , Infecções por Coronavirus/sangue , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Reações Cruzadas , Humanos , Leucócitos Mononucleares/imunologia , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Virais/metabolismo , Vacinas Virais/imunologia
3.
Cell ; 178(3): 515-517, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348883

RESUMO

Garcia-Campos et al. describe MAZTER-seq, which deploys a sequence-specific, methylation-sensitive bacterial single-stranded ribonuclease MazF to provide nucleotide-resolution quantification of m6A methylation sites. The study reveals many new sites and supports the idea of a predictable "m6A code," where methylation levels are dictated primarily by local sequence at the site of methylation.


Assuntos
Metilação de DNA , Ribonucleases , Sequência de Bases
4.
Mol Cell ; 82(9): 1678-1690.e12, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305312

RESUMO

The functional consequence of N6-methyladenosine (m6A) RNA modification is mediated by "reader" proteins of the YTH family. YTH domain-containing 2 (YTHDC2) is essential for mammalian fertility, but its molecular function is poorly understood. Here, we identify U-rich motifs as binding sites of YTHDC2 on 3' UTRs of mouse testicular RNA targets. Although its YTH domain is an m6A-binder in vitro, the YTH point mutant mice are fertile. Significantly, the loss of its 3'→5' RNA helicase activity causes mouse infertility, with the catalytic-dead mutation being dominant negative. Biochemical studies reveal that the weak helicase activity of YTHDC2 is enhanced by its interaction with the 5'→3' exoribonuclease XRN1. Single-cell transcriptomics indicate that Ythdc2 mutant mitotic germ cells transition into meiosis but accumulate a transcriptome with mixed mitotic/meiotic identity that fail to progress further into meiosis. Finally, our demonstration that ythdc2 mutant zebrafish are infertile highlights its conserved role in animal germ cell development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/metabolismo , RNA Helicases , Peixe-Zebra , Animais , Fertilidade/genética , Mamíferos/metabolismo , Meiose , Camundongos , RNA/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Peixe-Zebra/genética
5.
Cell ; 157(7): 1698-711, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24910301

RESUMO

Germline-specific Piwi-interacting RNAs (piRNAs) protect animal genomes against transposons and are essential for fertility. piRNAs targeting active transposons are amplified by the ping-pong cycle, which couples Piwi endonucleolytic slicing of target RNAs to biogenesis of new piRNAs. Here, we describe the identification of a transient Amplifier complex that mediates biogenesis of secondary piRNAs in insect cells. Amplifier is nucleated by the DEAD box RNA helicase Vasa and contains the two Piwi proteins participating in the ping-pong loop, the Tudor protein Qin/Kumo and antisense piRNA guides. These components assemble on the surface of Vasa's helicase domain, which functions as an RNA clamp to anchor Amplifier onto transposon transcripts. We show that ATP-dependent RNP remodeling by Vasa facilitates transfer of 5' sliced piRNA precursors between ping-pong partners, and loss of this activity causes sterility in Drosophila. Our results reveal the molecular basis for the small RNA amplification that confers adaptive immunity against transposons.


Assuntos
Bombyx/metabolismo , Proteínas de Insetos/metabolismo , RNA Interferente Pequeno/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bombyx/genética , Linhagem Celular , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Proteínas de Insetos/genética , Mutação , Ovário/citologia , Ovário/metabolismo
6.
Genes Dev ; 34(11-12): 745-750, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32381626

RESUMO

DNA methylation is a major silencing mechanism of transposable elements (TEs). Here we report that TEX15, a testis-specific protein, is required for TE silencing. TEX15 is expressed in embryonic germ cells and functions during genome-wide epigenetic reprogramming. The Tex15 mutant exhibits DNA hypomethylation in TEs at a level similar to Mili and Dnmt3c but not Miwi2 mutants. TEX15 is associated with MILI in testis. As loss of Tex15 causes TE desilencing with intact piRNA production, our results identify TEX15 as a new essential epigenetic regulator that may function as a nuclear effector of MILI to silence TEs by DNA methylation.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Elementos de DNA Transponíveis/genética , Inativação Gênica/fisiologia , Células Germinativas/metabolismo , Animais , Metilação de DNA , Células Germinativas Embrionárias/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos , Mutação
7.
Genes Dev ; 33(17-18): 1095-1097, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31481534

RESUMO

RNA export is tightly coupled to splicing in metazoans. In the Drosophila germline, precursors for the majority of Piwi-interacting RNAs (piRNAs) are unspliced. In this issue of Genes & Development, Kneuss and colleagues (pp. 1208-1220) identify Nxf3 as a novel germline-specific export adapter for such unspliced transcripts. Their findings reveal the sequence of events leading from its role at the site of transcription to delivery of the cargo to cytoplasmic piRNA biogenesis sites.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/genética , Transporte Ativo do Núcleo Celular , Animais , Elementos de DNA Transponíveis , Drosophila/genética , RNA Interferente Pequeno
8.
Mol Cell ; 71(6): 986-1000.e11, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197299

RESUMO

Internal modification of RNAs with N6-methyladenosine (m6A) is a highly conserved means of gene expression control. While the METTL3/METTL14 heterodimer adds this mark on thousands of transcripts in a single-stranded context, the substrate requirements and physiological roles of the second m6A writer METTL16 remain unknown. Here we describe the crystal structure of human METTL16 to reveal a methyltransferase domain furnished with an extra N-terminal module, which together form a deep-cut groove that is essential for RNA binding. When presented with a random pool of RNAs, METTL16 selects for methylation-structured RNAs where the critical adenosine is present in a bulge. Mouse 16-cell embryos lacking Mettl16 display reduced mRNA levels of its methylation target, the SAM synthetase Mat2a. The consequence is massive transcriptome dysregulation in ∼64-cell blastocysts that are unfit for further development. This highlights the role of an m6A RNA methyltransferase in facilitating early development via regulation of SAM availability.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/metabolismo , Metiltransferases/ultraestrutura , Adenosina/metabolismo , Animais , Desmetilação , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Expressão Gênica/genética , Células HEK293 , Humanos , Metionina Adenosiltransferase , Metilação , Metiltransferases/fisiologia , Camundongos/embriologia , Camundongos Knockout , RNA , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo
9.
RNA ; 29(3): 308-316, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617658

RESUMO

Argonautes are small RNA-binding proteins, with some having small RNA-guided endonuclease (slicer) activity that cleaves target nucleic acids. One cardinal rule that is structurally defined is the inability of slicers to cleave target RNAs when nucleotide mismatches exist between the paired small RNA and the target at the cleavage site. Animal-specific PIWI clade Argonautes associate with PIWI-interacting RNAs (piRNAs) to silence transposable elements in the gonads, and this is essential for fertility. We previously demonstrated that purified endogenous mouse MIWI fails to cleave mismatched targets in vitro. Surprisingly, here we find using knock-in mouse models that target sites with cleavage-site mismatches at the 10th and 11th piRNA nucleotides are precisely sliced in vivo. This is identical to the slicing outcome in knock-in mice where targets are base-paired perfectly with the piRNA. Additionally, we find that pachytene piRNA-guided slicing in both these situations failed to initiate phased piRNA production from the specific target mRNA we studied. Instead, the two slicer cleavage fragments were retained in PIWI proteins as pre-piRNA and 17-19 nt by-product fragments. Our results indicate that PIWI slicing rules established in vitro are not respected in vivo, and that all targets of PIWI slicing are not substrates for piRNA biogenesis.


Assuntos
Elementos de DNA Transponíveis , Testículo , Masculino , Camundongos , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Testículo/metabolismo , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA de Interação com Piwi , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo
10.
RNA ; 29(5): 609-619, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36754578

RESUMO

Eukaryotic mRNAs are modified at the 5' end with a methylated guanosine (m7G) that is attached to the transcription start site (TSS) nucleotide. The TSS nucleotide is 2'-O-methylated (Nm) by CMTR1 in organisms ranging from insects to human. In mammals, the TSS adenosine can be further N 6 -methylated by RNA polymerase II phosphorylated CTD-interacting factor 1 (PCIF1) to create m6Am. Curiously, the fly ortholog of mammalian PCIF1 is demonstrated to be catalytic-dead, and its functions are not known. Here, we show that Pcif1 mutant flies display a reduced fertility which is particularly marked in females. Deep sequencing analysis of Pcif1 mutant ovaries revealed transcriptome changes with a notable increase in expression of genes belonging to the mitochondrial ATP synthetase complex. Furthermore, the Pcif1 protein is distributed along euchromatic regions of polytene chromosomes, and the Pcif1 mutation behaved as a modifier of position-effect-variegation (PEV) suppressing the heterochromatin-dependent silencing of the white gene. Similar or stronger changes in the transcriptome and PEV phenotype were observed in flies that expressed a cytosolic version of Pcif1. These results point to a nuclear cotranscriptional gene regulatory role for the catalytic-dead fly Pcif1 that is probably based on its conserved ability to interact with the RNA polymerase II carboxy-terminal domain.


Assuntos
Drosophila , RNA Polimerase II , Feminino , Animais , Humanos , Drosophila/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fertilidade/genética , Transcriptoma , Nucleotídeos/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mamíferos/genética , Proteínas Nucleares/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
11.
Mol Cell ; 68(2): 374-387.e12, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29033321

RESUMO

N6-methyladenosine (m6A) is an essential internal RNA modification that is critical for gene expression control in most organisms. Proteins with a YTH domain recognize m6A marks and are mediators of molecular functions like RNA splicing, mRNA decay, and translation control. Here we demonstrate that YTH domain-containing 2 (YTHDC2) is an m6A reader that is essential for male and female fertility in mice. High-throughput mapping of the m6A transcriptome and expression analysis in the Yhtdc2 mutant testes reveal an upregulation of m6A-enriched transcripts. Our biochemical studies indicate that YTHDC2 is an RNA-induced ATPase with a 3'→5' RNA helicase activity. Furthermore, YTHDC2 recruits the 5'→3' exoribonuclease XRN1 via Ankyrin repeats that are inserted in between the RecA modules of the RNA helicase domain. Our studies reveal a role for YTHDC2 in modulating the levels of m6A-modified germline transcripts to maintain a gene expression program that is conducive for progression through meiosis.


Assuntos
Adenosina/análogos & derivados , Regulação da Expressão Gênica/fisiologia , Meiose/fisiologia , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animais , Repetição de Anquirina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Domínios Proteicos , RNA Helicases/genética , RNA Mensageiro/genética
12.
BMC Plant Biol ; 24(1): 262, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594614

RESUMO

BACKGROUND: Foliar diseases namely late leaf spot (LLS) and leaf rust (LR) reduce yield and deteriorate fodder quality in groundnut. Also the high oleic acid content has emerged as one of the most important traits for industries and consumers due to its increased shelf life and health benefits. RESULTS: Genetic mapping combined with pooled sequencing approaches identified candidate resistance genes (LLSR1 and LLSR2 for LLS and LR1 for LR) for both foliar fungal diseases. The LLS-A02 locus housed LLSR1 gene for LLS resistance, while, LLS-A03 housed LLSR2 and LR1 genes for LLS and LR resistance, respectively. A total of 49 KASPs markers were developed from the genomic regions of important disease resistance genes, such as NBS-LRR, purple acid phosphatase, pentatricopeptide repeat-containing protein, and serine/threonine-protein phosphatase. Among the 49 KASP markers, 41 KASPs were validated successfully on a validation panel of contrasting germplasm and breeding lines. Of the 41 validated KASPs, 39 KASPs were designed for rust and LLS resistance, while two KASPs were developed using fatty acid desaturase (FAD) genes to control high oleic acid levels. These validated KASP markers have been extensively used by various groundnut breeding programs across the world which led to development of thousands of advanced breeding lines and few of them also released for commercial cultivation. CONCLUSION: In this study, high-throughput and cost-effective KASP assays were developed, validated and successfully deployed to improve the resistance against foliar fungal diseases and oleic acid in groundnut. So far deployment of allele-specific and KASP diagnostic markers facilitated development and release of two rust- and LLS-resistant varieties and five high-oleic acid groundnut varieties in India. These validated markers provide opportunities for routine deployment in groundnut breeding programs.


Assuntos
Basidiomycota , Micoses , Resistência à Doença/genética , Ácido Oleico , Melhoramento Vegetal , Mapeamento Cromossômico , Basidiomycota/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
13.
Mol Biol Rep ; 51(1): 242, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300326

RESUMO

Sulfur-containing amino acids (SAA), namely methionine, and cysteine are crucial essential amino acids (EAA) considering the dietary requirements of humans and animals. However, a few crop plants, especially legumes, are characterized with suboptimal levels of these EAA thereby limiting their nutritive value. Hence, improved comprehension of the mechanistic perspective of sulfur transport and assimilation into storage reserve, seed storage protein (SSP), is imperative. Efforts to augment the level of SAA in seed storage protein form an integral component of strategies to balance nutritive quality and quantity. In this review, we highlight the emerging trends in the sulfur biofortification approaches namely transgenics, genetic and molecular breeding, and proteomic rebalancing with sulfur nutrition. The transgenic 'push and pull strategy' could enhance sulfur capture and storage by expressing genes that function as efficient transporters, sulfate assimilatory enzymes, sulfur-rich foreign protein sinks, or by suppressing catabolic enzymes. Modern molecular breeding approaches that adopt high throughput screening strategies and machine learning algorithms are invaluable in identifying candidate genes and alleles associated with SAA content and developing improved crop varieties. Sulfur is an essential plant nutrient and its optimal uptake is crucial for seed sulfur metabolism, thereby affecting seed quality and yields through proteomic rebalance between sulfur-rich and sulfur-poor seed storage proteins.


Assuntos
Aminoácidos Essenciais , Proteômica , Animais , Humanos , Transporte Biológico , Proteínas de Armazenamento de Sementes , Enxofre , Sulfatos
14.
Macromol Rapid Commun ; : e2400481, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39405501

RESUMO

This study presents a novel approach to developing eco-friendly dye-sensitized solar cells (DSSCs) using natural and renewable materials for gel polymer electrolytes (GPEs), reducing reliance on unsustainable solvents. Water is added to polar aprotic solvents, specifically ethylene carbonate/propylene carbonate (EC/PC), across various mass fractions (0:100 to 100:0). An amphiphilic hydroxypropyl cellulose (HPC) natural polymer is employed to formulate GPEs within this water-EC/PC cosolvent system, achieving successful gelation up to 50:50 mass fractions. Incorporating water reduced the gel strength and viscosity of the GPEs. Water acted as a plasticizer, enhancing the polymer chains mobility, and creating a more flexible and permeable structure. This increased ion diffusion coefficients and ion mobility, resulting in a maximum ionic conductivity of 18.17 mS cm-1. The highest efficiency achieved in DSSCs using these GPEs is 5.81%, with elevated short-circuit current density and reduced recombination losses. However, some compositions experienced syneresis, affecting their stability. The GPE with a 40:60 mass fraction exhibited superior long-term stability because it is free from syneresis, though it achieved a lower efficiency (4.83%), making it the best-performing sample. This work demonstrates the feasibility and benefits of using gel polymer electrolytes in an aqueous system, improving DSSC efficiency and sustainability.

15.
Mol Cell ; 61(1): 138-52, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26669262

RESUMO

PIWI-interacting RNAs (piRNAs) guide PIWI proteins to suppress transposons in the cytoplasm and nucleus of animal germ cells, but how silencing in the two compartments is coordinated is not known. Here we demonstrate that endonucleolytic slicing of a transcript by the cytosolic mouse PIWI protein MILI acts as a trigger to initiate its further 5'→3' processing into non-overlapping fragments. These fragments accumulate as new piRNAs within both cytosolic MILI and the nuclear MIWI2. We also identify Exonuclease domain-containing 1 (EXD1) as a partner of the MIWI2 piRNA biogenesis factor TDRD12. EXD1 homodimers are inactive as a nuclease but function as an RNA adaptor within a PET (PIWI-EXD1-Tdrd12) complex. Loss of Exd1 reduces sequences generated by MILI slicing, impacts biogenesis of MIWI2 piRNAs, and de-represses LINE1 retrotransposons. Thus, piRNA biogenesis triggered by PIWI slicing, and promoted by EXD1, ensures that the same guides instruct PIWI proteins in the nucleus and cytoplasm.


Assuntos
Proteínas Argonautas/metabolismo , Núcleo Celular/enzimologia , Citosol/enzimologia , Exonucleases/metabolismo , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Argonautas/química , Proteínas Argonautas/genética , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Exonucleases/química , Exonucleases/genética , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos Transgênicos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
16.
Plant Cell Rep ; 43(4): 108, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557872

RESUMO

KEY MESSAGE: The CcGRXS12 gene protects plants from cellular oxidative damage that are caused by both biotic and abiotic stresses. The protein possesses GSH-disulphide oxidoreductase property but lacks Fe-S cluster assembly mechanism. Glutaredoxins (Grxs) are small, ubiquitous and multi-functional proteins. They are present in different compartments of plant cells. A chloroplast targeted Class I GRX (CcGRXS12) gene was isolated from Capsicum chinense during the pepper mild mottle virus (PMMoV) infection. Functional characterization of the gene was performed in Nicotiana benthamiana transgenic plants transformed with native C. chinense GRX (Nb:GRX), GRX-fused with GFP (Nb:GRX-GFP) and GRX-truncated for chloroplast sequences fused with GFP (Nb:Δ2MGRX-GFP). Overexpression of CcGRXS12 inhibited the PMMoV-I accumulation at the later stage of infection, accompanied with the activation of salicylic acid (SA) pathway pathogenesis-related (PR) transcripts and suppression of JA/ET pathway transcripts. Further, the reduced accumulation of auxin-induced Glutathione-S-Transferase (pCNT103) in CcGRXS12 overexpressing lines indicated that the protein could protect the plants from the oxidative stress caused by the virus. PMMoV-I infection increased the accumulation of pyridine nucleotides (PNs) mainly due to the reduced form of PNs (NAD(P)H), and it was high in Nb:GRX-GFP lines compared to other transgenic lines. Apart from biotic stress, CcGRXS12 protects the plants from abiotic stress conditions caused by H2O2 and herbicide paraquat. CcGRXS12 exhibited GSH-disulphide oxidoreductase activity in vitro; however, it was devoid of complementary Fe-S cluster assembly mechanism found in yeast. Overall, this study proves that CcGRXS12 plays a crucial role during biotic and abiotic stress in plants.


Assuntos
Capsicum , Tobamovirus , Capsicum/genética , Capsicum/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Peróxido de Hidrogênio , Oxirredução , Dissulfetos
17.
Optom Vis Sci ; 101(3): 164-172, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546758

RESUMO

SIGNIFICANCE: A snapshot intraocular pressure (IOP) is ineffective in identifying the IOP peak and fluctuation, especially during sleep. Because IOP variability plays a significant role in the progression of glaucoma, monitoring the IOP, especially during sleep, is essential to capture the dynamic nature of IOP. PURPOSE: We aimed to design an ocular pressure estimator (OPE) that can reliably and accurately measure the IOP noninvasively over closed-eyelid condition. METHODS: Ocular pressure estimator works on the principle that the external pressure applied by raising the IOP of the eyeball is transmitted through a compressible septum to the pressure sensor, thus recording the IOP. A fluid-filled pouch with a pressure sensor was placed over a rubber glove mimicking the eyelid (septum), covering the cornea of enucleated goat eyeballs. A pressure-controlled setup was connected to a goat cadaver eye, which was validated by a rebound tonometer. Cannulation of eyeballs through the lower limbus had the least difference from the control setup values documented using rebound tonometer, compared with cannulation through the optic nerve. Intraocular pressures ranging from 3 to 30 mmHg was induced, and the outputs recorded using OPE were amplified and recorded for 10 minutes (n = 10 eyes). We stratified the randomization of the number of times and the induced pressures. RESULTS: The measurements recorded were found to be linear when measured against an IOP range of 3 to 30 mmHg. The device has excellent reliability (intraclass correlation coefficient, 0.998). The repeatability coefficient and coefficient of variations were 4.24 (3.60 to 4.87) and 8.61% (7.33 to 9.90), respectively. The overall mean difference ± SD between induced IOP and the OPE was 0.22 ± 3.50 (95% confidence interval, -0.35 to 0.79) mmHg across all IOP ranges. CONCLUSIONS: Ocular pressure estimator offers a promising approach for reliably and accurately measuring IOP and its fluctuation noninvasively under a condition mimicking a closed eye.


Assuntos
Pressão Intraocular , Tonometria Ocular , Animais , Reprodutibilidade dos Testes , Pálpebras , Cabras
18.
Ophthalmic Physiol Opt ; 44(2): 378-387, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38149468

RESUMO

PURPOSE: Evidence suggests that eye movements have potential as a tool for detecting glaucomatous visual field defects. This study evaluated the influence of sampling frequency on eye movement parameters in detecting glaucomatous visual field defects during a free-viewing task. METHODS: We investigated eye movements in two sets of experiments: (a) young adults with and without simulated visual field defects and (b) glaucoma patients and age-matched controls. In Experiment 1, we recruited 30 healthy volunteers. Among these, 10 performed the task with a gaze-contingent superior arcuate (SARC) scotoma, 10 performed the task with a gaze-contingent biarcuate (BARC) scotoma and 10 performed the task without a simulated scotoma (NoSim). The experimental task involved participants freely exploring 100 images, each for 4 s. Eye movements were recorded using the LiveTrack Lightning eye-tracker (500 Hz). In Experiment 2, we recruited 20 glaucoma patients and 16 age-matched controls. All participants underwent similar experimental tasks as in Experiment 1, except only 37 images were shown for exploration. To analyse the effect of sampling frequency, data were downsampled to 250, 120 and 60 Hz. Eye movement parameters, such as the number of fixations, fixation duration, saccadic amplitude and bivariate contour ellipse area (BCEA), were computed across various sampling frequencies. RESULTS: Two-way ANOVA revealed no significant effects of sampling frequency on fixation duration (simulation, p = 0.37; glaucoma patients, p = 0.95) and BCEA (simulation, p = 0.84; glaucoma patients: p = 0.91). BCEA showed good distinguishability in differentiating groups across different sampling frequencies, whereas fixation duration failed to distinguish between glaucoma patients and controls. Number of fixations and saccade amplitude showed variations with sampling frequency in both simulations and glaucoma patients. CONCLUSION: In both simulations and glaucoma patients, BCEA consistently differentiated them from controls across various sampling frequencies.


Assuntos
Glaucoma , Campos Visuais , Adulto Jovem , Humanos , Escotoma , Movimentos Oculares , Transtornos da Visão , Glaucoma/diagnóstico
19.
Pediatr Radiol ; 54(1): 20-26, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962606

RESUMO

The global temperature has been increasing resulting in climate change. This negatively impacts planetary health that disproportionately affects the most vulnerable among us, especially children. Extreme weather events, such as hurricanes, tornadoes, wildfires, flooding, and heatwaves, are becoming more frequent and severe, posing a significant threat to our patients' health, safety, and security. Concurrently, shifts in environmental exposures, including air pollution, allergens, pathogenic vectors, and microplastics, further exacerbate the risks faced by children. In this paper, we provide an overview of pediatric illnesses that are becoming more prevalent and severe because of extreme weather events, global temperature increases, and shifts in environmental exposures. As members of pediatric health care teams, it is crucial for pediatric radiologists to be knowledgeable about the impacts of climate change on our patients, and continue to advocate for safe, healthier environments for our patients.


Assuntos
Biodiversidade , Radiologia , Humanos , Criança , Plásticos , Temperatura , Mudança Climática
20.
Infancy ; 29(6): 1002-1021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39307918

RESUMO

Infants are sensitive to distortions to the global configurations of bodies by 3.5 months of age, suggesting an early onset of body knowledge. It is unclear, however, whether such sensitivity indicates knowledge of the location of specific body parts or solely reflects sensitivity to the overall gestalt of bodies. This study addressed this issue by examining whether, like adults, infants attend to specific locations where body parts have been reorganized. Results show that adults and 5-month-olds, but not 3.5-month-olds, allocated more attention to the body joint areas (e.g., where the arm connects to the shoulder) that were reorganized versus ones that were typical. To examine whether this kind of processing is driven by low-level features, 5-month-olds were tested on images in which the head was removed. Infants no longer exhibited differential scanning of typical versus reorganized bodies. Results suggest that 5-month-olds are sensitive to the location of body parts, thereby demonstrating adult-like response patterns consistent with early expertise in body processing. The contrasting failure of 3.5-month-olds to exhibit sensitivity to the reorganization suggests a developmental change between these ages.


Assuntos
Atenção , Desenvolvimento Infantil , Humanos , Lactente , Feminino , Masculino , Atenção/fisiologia , Desenvolvimento Infantil/fisiologia , Adulto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA