Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Neurochem ; 168(9): 2935-2955, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943350

RESUMO

Astrocytes provide metabolic support to neurons, maintain ionic and water homeostasis, and uptake and recycle neurotransmitters. After exposure to the prototypical PAMP lipopolysaccharide (LPS), reactive astrocytes increase the expression of pro-inflammatory genes, facilitating neurodegeneration. In this study, we analyzed the expression of homeostatic genes in astrocytes exposed to LPS and identified the epigenetic factors contributing to the suppression of homeostatic genes in reactive astrocytes. Primary astrocytic cultures were acutely exposed to LPS and allowed to recover for 24, 72 h, and 7 days. As expected, LPS exposure induced reactive astrogliosis and increased the expression of pro-inflammatory IL-1B and IL-6. Interestingly, the acute exposure resulted in persistent hypermethylation of astroglial DNA. Similar hypermethylation was observed in highly reactive astrocytes from the traumatic brain injury (TBI) penumbra in vivo. Hypermethylation was accompanied by decreased expression of homeostatic genes including LDHA and Scl16a1 (MCT1) both involved in the lactate shuttle to neurons; glutamine synthase (GS) responsible for glutamate processing; Kcnj10 (Kir4.1) important for K+ homeostasis, and the water channel aquaporin-4 (Aqp4). Furthermore, the master regulator of DNA methylation, MAFG-1, as well as DNA methyl transferases DNMT1 and DNMT3a were overexpressed. The downregulation of homeostatic genes correlated with increased methylation of CpG islands in their promoters, as assessed by methylation-sensitive PCR and increased DNMT3a binding to the GS promoter. Treatment with decitabine, a DNMT inhibitor, prevented the LPS- and the HMGB-1-induced downregulation of homeostatic genes. Decitabine treatment also prevented the neurotoxic effects of these astrocytes in primary cortical cultures. In summary, our findings reveal that the pathological remodeling of reactive astrocytes encompasses not only the pro-inflammatory response but, significantly, also entails a long-term suppression of homeostatic gene expression with methylation of crucial CpG islands within their promoters.


Assuntos
Astrócitos , Metilação de DNA , Regulação para Baixo , Homeostase , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Metilação de DNA/efeitos dos fármacos , Animais , Homeostase/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células Cultivadas , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/genética , Ratos , Camundongos Endogâmicos C57BL
2.
Clin Sci (Lond) ; 138(9): 555-572, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38602323

RESUMO

Epilepsy, a chronic neurological disorder characterized by recurrent seizures, affects millions of individuals worldwide. Despite extensive research, the underlying mechanisms leading to epileptogenesis, the process by which a normal brain develops epilepsy, remain elusive. We, here, explored the immune system and spleen responses triggered by pilocarpine-induced status epilepticus (SE) focusing on their role in the epileptogenesis that follows SE. Initial examination of spleen histopathology revealed transient disorganization of white pulp, in animals subjected to SE. This disorganization, attributed to immune activation, peaked at 1-day post-SE (1DPSE) but returned to control levels at 3DPSE. Alterations in peripheral blood lymphocyte populations, demonstrated a decrease following SE, accompanied by a reduction in CD3+ T-lymphocytes. Further investigations uncovered an increased abundance of T-lymphocytes in the piriform cortex and choroid plexus at 3DPSE, suggesting a specific mobilization toward the Central Nervous System. Notably, splenectomy mitigated brain reactive astrogliosis, neuroinflammation, and macrophage infiltration post-SE, particularly in the hippocampus and piriform cortex. Additionally, splenectomized animals exhibited reduced lymphatic follicle size in the deep cervical lymph nodes. Most significantly, splenectomy correlated with improved neuronal survival, substantiated by decreased neuronal loss and reduced degenerating neurons in the piriform cortex and hippocampal CA2-3 post-SE. Overall, these findings underscore the pivotal role of the spleen in orchestrating immune responses and neuroinflammation following pilocarpine-induced SE, implicating the peripheral immune system as a potential therapeutic target for mitigating neuronal degeneration in epilepsy.


Assuntos
Doenças Neuroinflamatórias , Pilocarpina , Baço , Estado Epiléptico , Animais , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Baço/imunologia , Baço/patologia , Masculino , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/imunologia , Esplenectomia , Ratos Sprague-Dawley , Hipocampo/patologia , Modelos Animais de Doenças , Linfócitos T/imunologia , Córtex Piriforme/patologia , Neurônios/patologia
3.
J Neurochem ; 167(2): 183-203, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37592830

RESUMO

Astrocytes are the main homeostatic cells in the central nervous system (CNS) and they have an essential role in preserving neuronal physiology. After brain injury, astrocytes become reactive, and that involves a profound change in the astroglial gene expression program as well as intense cytoskeleton remodeling that has been classically shown by the up-regulation of glial fibrillary acidic protein (GFAP), a pan-reactive gene over-expressed in reactive astrocytes, independently of the type of injury. Using the stab wound rodent model of penetrating traumatic injury in the cortex, we here studied the reactive astroglial morphology and reactive microgliosis in detail at 1, 3, 7, 14, and 28 days post-injury (dpi). By combining immunohistochemistry, morphometrical parameters, and Sholl analysis, we segmented the astroglial cell population into clusters of reactive astrocytes that were localized in the core, penumbra, and distal regions of the stab wound. Specifically, highly reactive clusters with more complex morphology, increased C3, decreased aquaporin-4 (AQP4), and glutamine synthetase (GS) expression, were enriched at 7 dpi when behavioral alterations, microgliosis, and neuronal alterations in injured mice were most significant. While pro-inflammatory gain of function with peripheral lipopolysaccharide (LPS) administration immediately after a stab wound expanded these highly reactive astroglial clusters, the treatment with the NF-κB inhibitor sulfasalazine reduced the abundance of this highly reactive cluster. Increased neuronal loss and exacerbated reactive microgliosis at 7 dpi were associated with the expansion of the highly reactive astroglial cluster. We conclude that highly reactive astrocytes found in stab wound injury, but expanded in pro-inflammatory conditions, are a population of astrocytes that become engaged in pathological remodeling with a pro-inflammatory gain of function and loss of homeostatic capacity. Controlling this astroglial population may be a tempting strategy to reduce neuronal loss and neuroinflammation in the injured brain.

4.
Clin Sci (Lond) ; 135(6): 725-730, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33729497

RESUMO

Epilepsy is a highly prevalent neurological disease and anti-epileptic drugs (AED) are almost the unique clinical treatment option. A disbalanced brain renin-angiotensin system (RAS) has been proposed in epilepsy and several reports have shown that angiotensin II (Ang II) receptor-1 (ATR1) activation is pro-inflammatory and pro-epileptogenic. In agreement, ATR1 blockage with the repurposed drug losartan has shown benefits in animal models of epilepsy. Processing of Ang II by ACE2 enzyme renders Ang-(1-7), a metabolite that activates the mitochondrial assembly (Mas) receptor (MasR) pathway. MasR activation presents beneficial effects, facilitating vasodilatation, increasing anti-inflammatory and antioxidative responses. In a recent paper published in Clinical Science, Gomes and colleagues (Clin. Sci. (Lond.) (2020) 134, 2263-2277) performed intracerebroventricular (icv) infusion of Ang-(1-7) in animals subjected to the pilocarpine model of epilepsy, starting after the first spontaneous motor seizure (SMS). They showed that this approach reduced the frequency of SMS, restored animal anxiety, increased exploration, and augmented the hippocampal expression of protective catalase enzyme and antiapoptotic protein B-cell lymphoma 2 (Bcl-2). Interestingly, but surprisingly, Gomes and colleagues showed that MasR expression and mTor activity were reduced in the hippocampus of the epileptic Ang-(1-7) treated animals. These results show that Ang-(1-7) administration could represent a new avenue for developing strategies for the management of epilepsy in clinical settings. However, future work is necessary to evaluate the levels of RAS metabolites and the activity of key enzymes in these experimental interventions to completely understand the therapeutic potential of the brain RAS manipulation in epilepsy.


Assuntos
Epilepsia , Sistema Renina-Angiotensina , Animais , Hipocampo/metabolismo , Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
J Neurochem ; 144(6): 748-760, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280499

RESUMO

Secondary neuronal death is a serious stroke complication. This process is facilitated by the conversion of glial cells to the reactive pro-inflammatory phenotype that induces neurodegeneration. Therefore, regulation of glial activation is a compelling strategy to reduce brain damage after stroke. However, drugs have difficulties to access the CNS, and to specifically target glial cells. In the present work, we explored the use core-shell polyamidoamine tecto-dendrimer (G5G2.5 PAMAM) and studied its ability to target distinct populations of stroke-activated glial cells. We found that G5G2.5 tecto-dendrimer is actively engulfed by primary glial cells in a time- and dose-dependent manner showing high cellular selectivity and lysosomal localization. In addition, oxygen-glucose deprivation or lipopolysaccharides exposure in vitro and brain ischemia in vivo increase glial G5G2.5 uptake; not being incorporated by neurons or other cell types. We conclude that G5G2.5 tecto-dendrimer is a highly suitable carrier for targeted drug delivery to reactive glial cells in vitro and in vivo after brain ischemia.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Dendrímeros/farmacocinética , Neuroglia/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Isquemia Encefálica/complicações , Dendrímeros/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Cultura Primária de Células , Ratos Wistar , Acidente Vascular Cerebral/complicações
6.
J Neurochem ; 131(2): 190-205, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24923428

RESUMO

Extracellular S100B dramatically increases after brain injury. While low S100B levels are neuroprotective, micromolar S100B levels have shown in vitro to activate microglia and facilitate neuronal death. In astrocytes, S100B exposure activates nuclear factor kappa B (NF-κB) and induces pro-inflammatory mediators. On microglia and neurons S100B effects are essentially mediated by receptor for advanced glycation end products (RAGE)/NF-κB, but it is not clear if these intracellular cascades are activated by different S100B levels in astrocytes and whether increased extracellular S100B is sufficient to induce reactive gliosis. A better understanding of these pathways is essential for developing successful strategies to preserve the beneficial S100B effects after brain injury. Here, we show that microglia-depleted cultured astrocytes exposed to S100B mimicked several features of reactive gliosis by activating RAGE/Rac-1-Cdc42, RAGE/Erk-Akt or RAGE/NF-κB-dependent pathways. S100B effects include RAGE/Rac1-Cdc42-dependent astroglial hypertrophy and facilitation of migration as well as increased mitosis. S100B exposure improved the astrocytic survival to oxidative stress, an effect that requires Erk/Akt. S100B also activates NF-κB in a dose-dependent manner; increases RAGE proximal promoter transcriptional activity and augmented endogenous RAGE expression. S100B-exposed astrocytes showed a pro-inflammatory phenotype with expression of Toll-like receptor 2 (TLR 2), inducible nitric oxide synthase (iNOS) and interleukin 1-beta (IL-1ß), and facilitated neuronal death induced by oxygen-glucose deprivation. In vivo, intracerebral infusion of S100B was enough to induce an astroglial reactive phenotype. Together, these findings demonstrate that extracellular S100B in the micromolar level activates different RAGE-dependent pathways that turn astrocytes into a pro-inflammatory and neurodegenerative phenotype. We propose that S100B turns astrocytes into a reactive phenotype in a RAGE-dependent manner but engaging different intracellular pathways. While both nanomolar and micromolar S100B turn astrocytes into a reactive phenotype, micromolar S100B induces a conversion into a pro-inflammatory-neurodegenerative profile that facilitates neuronal death of OGD-exposed neurons. We think that S100B/RAGE interaction is essential to expand reactive gliosis in the injured brain being a tempting target for limiting reactive gliosis to prevent the glial conversion into the neurodegenerative profile.


Assuntos
Astrócitos/metabolismo , Comunicação Autócrina/fisiologia , Gliose/metabolismo , Receptores Imunológicos/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/administração & dosagem , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Comunicação Autócrina/efeitos dos fármacos , Bovinos , Células Cultivadas , Relação Dose-Resposta a Droga , Infusões Intraventriculares , Masculino , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada
7.
J Neurochem ; 117(2): 321-32, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21291473

RESUMO

S100B is a soluble protein secreted by astrocytes that exerts pro-survival or pro-apoptotic effects depending on the concentration reached in the extracellular millieu. The S100B receptor termed RAGE (for receptor for advanced end glycation products) is highly expressed in the developing brain but is undetectable in normal adult brain. In this study, we show that RAGE expression is induced in cortical neurons of the ischemic penumbra. Increased RAGE expression was also observed in primary cortical neurons exposed to excitotoxic glutamate (EG). S100B exerts effects on survival pathways and neurite extension when the cortical neurons have been previously exposed to EG and these S100B effects were prevented by anti-RAGE blocking antibodies. Furthermore, nuclear factor kappa B (NF-κB) is activated by S100B in a dose- and RAGE-dependent manner and neuronal death induced by NF-κB inhibition was prevented by S100B that restored NF-κB activation levels. Together, these findings suggest that excitotoxic damage can induce RAGE expression in neurons from ischemic penumbra and demonstrate that cortical neurons respond to S100B through engagement of RAGE followed by activation of NF-κB signaling. In addition, basal NF-κB activity in neurons is crucial to modulate the extent of pro-survival or pro-death S100B effects.


Assuntos
Dendritos/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , NF-kappa B/metabolismo , Neurônios/patologia , Receptores Imunológicos/metabolismo , Proteínas S100/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Isquemia Encefálica/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/patologia , Interações Medicamentosas , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Masculino , Neurônios/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/imunologia , Proteínas S100/metabolismo , Transdução de Sinais/fisiologia , Sulfadiazina/farmacologia , Fatores de Tempo
8.
Front Pharmacol ; 12: 689346, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234677

RESUMO

Following brain injury or in neurodegenerative diseases, astrocytes become reactive and may suffer pathological remodeling, features of which are the loss of their homeostatic functions and a pro-inflammatory gain of function that facilitates neurodegeneration. Pharmacological intervention to modulate this astroglial response and neuroinflammation is an interesting new therapeutic research strategy, but it still requires a deeper understanding of the underlying cellular and molecular mechanisms of the phenomenon. Based on the known microglial-astroglial interaction, the prominent role of the nuclear factor kappa B (NF-κB) pathway in mediating astroglial pathological pro-inflammatory gain of function, and its ability to recruit chromatin-remodeling enzymes, we first explored the microglial role in the initiation of astroglial pro-inflammatory conversion and then monitored the progression of epigenetic changes in the astrocytic chromatin. Different configurations of primary glial culture were used to modulate microglia-astrocyte crosstalk while inducing pro-inflammatory gain of function by lipopolysaccharide (LPS) exposure. In vivo, brain ischemia by cortical devascularization (pial disruption) was performed to verify the presence of epigenetic marks in reactive astrocytes. Our results showed that 1) microglia is required to initiate the pathological conversion of astrocytes by triggering the NF-κB signaling pathway; 2) this interaction is mediated by soluble factors and induces stable astroglial phenotypic changes; 3) the pathological conversion promotes chromatin remodeling with stable increase in H3K9K14ac, temporary increase in H3K27ac, and temporary reduction in heterochromatin mark H3K9me3; and 4) in vivo reactive astrocytes show increased H3K27ac mark in the neuroinflammatory milieu from the ischemic penumbra. Our findings indicate that astroglial pathological pro-inflammatory gain of function is associated with profound changes in the configuration of astrocytic chromatin, which in turn are initiated by microglia-derived cues. These results open a new avenue in the study of potential pharmacological interventions that modify the initiation and stabilization of astroglial pathological remodeling, which would be useful in acute and chronic CNS injury. Epigenetic changes represent a plausible pharmacological target to interfere with the stabilization of the pathological astroglial phenotype.

9.
Front Pharmacol ; 12: 707859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421599

RESUMO

Synaptic alterations concomitant with neuroinflammation have been described in patients and experimental models of autism spectrum disorder (ASD). However, the role of microglia and astroglia in relation to synaptic changes is poorly understood. Male Wistar rats prenatally exposed to valproic acid (VPA, 450 mg/kg, i.p.) or saline (control) at embryonic day 10.5 were used to study synapses, microglia, and astroglia in the prefrontal cortex (PFC) at postnatal days 3 and 35 (PND3 and PND35). Primary cultures of cortical neurons, microglia, and astroglia isolated from control and VPA animals were used to study each cell type individually, neuron-microglia and microglia-astroglia crosstalk. In the PFC of VPA rats, synaptic changes characterized by an increase in the number of excitatory synapses were evidenced at PND3 and persisted until PND35. At PND3, microglia and astroglia from VPA animals were morphologically similar to those of age-matched controls, whereas at PND35, reactive microgliosis and astrogliosis were observed in the PFC of VPA animals. Cortical neurons isolated from VPA rats mimicked in vitro the synaptic pattern seen in vivo. Cortical microglia and astroglia isolated from VPA animals exhibited reactive morphology, increased pro-inflammatory cytokines, and a compromised miRNA processing machinery. Microglia from VPA animals also showed resistance to a phagocytic challenge. In the presence of neurons from VPA animals, microglia isolated from VPA rats revealed a non-reactive morphology and promoted neurite outgrowth, while microglia from control animals displayed a reactive profile and promoted dendritic retraction. In microglia-astroglia co-cultures, microglia from VPA animals displayed a reactive profile and exacerbated astrocyte reactivity. Our study indicates that cortical microglia from VPA animals are insensitive or adapted to neuronal cues expressed by neurons from VPA animals. Further, long-term in vivo microgliosis could be the result of altered microglia-astroglia crosstalk in VPA animals. Thus, our study highlights cortical microglia-astroglia communication as a new mechanism implicated in neuroinflammation in ASD; consequently, we propose that this crosstalk is a potential target for interventions in this disorder.

10.
Mol Autism ; 12(1): 23, 2021 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676530

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are synaptopathies characterized by area-specific synaptic alterations and neuroinflammation. Structural and adhesive features of hippocampal synapses have been described in the valproic acid (VPA) model. However, neuronal and microglial contribution to hippocampal synaptic pattern and its time-course of appearance is still unknown. METHODS: Male pups born from pregnant rats injected at embryonic day 10.5 with VPA (450 mg/kg, i.p.) or saline (control) were used. Maturation, exploratory activity and social interaction were assessed as autistic-like traits. Synaptic, cell adhesion and microglial markers were evaluated in the CA3 hippocampal region at postnatal day (PND) 3 and 35. Primary cultures of hippocampal neurons from control and VPA animals were used to study synaptic features and glutamate-induced structural remodeling. Basal and stimuli-mediated reactivity was assessed on microglia primary cultures isolated from control and VPA animals. RESULTS: At PND3, before VPA behavioral deficits were evident, synaptophysin immunoreactivity and the balance between the neuronal cell adhesion molecule (NCAM) and its polysialylated form (PSA-NCAM) were preserved in the hippocampus of VPA animals along with the absence of microgliosis. At PND35, concomitantly with the establishment of behavioral deficits, the hippocampus of VPA rats showed fewer excitatory synapses and increased NCAM/PSA-NCAM balance without microgliosis. Hippocampal neurons from VPA animals in culture exhibited a preserved synaptic puncta number at the beginning of the synaptogenic period in vitro but showed fewer excitatory synapses as well as increased NCAM/PSA-NCAM balance and resistance to glutamate-induced structural synaptic remodeling after active synaptogenesis. Microglial cells isolated from VPA animals and cultured in the absence of neurons showed similar basal and stimuli-induced reactivity to the control group. Results indicate that in the absence of glia, hippocampal neurons from VPA animals mirrored the in vivo synaptic pattern and suggest that while neurons are primed during the prenatal period, hippocampal microglia are not intrinsically altered. CONCLUSIONS: Our study suggests microglial role is not determinant for developing neuronal alterations or counteracting neuronal outcome in the hippocampus and highlights the crucial role of hippocampal neurons and structural plasticity in the establishment of the synaptic alterations in the VPA rat model.


Assuntos
Anticonvulsivantes , Transtorno do Espectro Autista/induzido quimicamente , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Ácido Valproico , Animais , Transtorno do Espectro Autista/metabolismo , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Microglia/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/ultraestrutura , Fosfoproteínas Fosfatases/metabolismo , Gravidez , Ratos Wistar
11.
J Neurochem ; 112(4): 854-69, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20002528

RESUMO

Sleep apnea (SA) can be effectively managed in humans but it is recognized that when left untreated, SA causes long-lasting changes in neuronal circuitry in the brain. Recent neuroimaging studies gave suggested that these neuronal changes are also present even in patients successfully treated for the acute effects of SA. The cellular mechanisms that account for these changes are not certain but animal models of intermittent hypoxia (IH) during sleep have shown neuronal death and impairment in learning and memory. Reactive gliosis has a drastic effect on neuronal survival and circuitry and in this study we examined the neuro-glial response in brain areas affected by SA. Glial and neuronal alterations were analyzed after 1, 3, 5 and 10 days of exposure to IH (8 h/day during the sleep phase, cycles of 6 min each, 10-21% O2) and observed significant astroglial hyperplasia and hypertrophy in parietal brain cortex and hippocampus by studying gliofibrillary acidic protein, Vimentin, S100B and proliferating cell nuclear antigen expression. In addition, altered morphology, reduced dendrite branching and caspase activation were observed in the CA-1 hippocampal and cortical (layers IV-V) pyramidal neurons at short exposure times (1-3 days). Surprisingly, longer exposure to IH reduced the neuronal death rate and increased neuronal branching in the presence of persistent reactive gliosis. Up-regulation of hypoxia inducible factor 1 alpha (HIF-1alpha) and mdr-1, a HIF-1alpha target gene, were observed and increased expression of receptor for advanced end glycated products and its binding partner S100B were also noted. Our results show that a low number of hypoxic cycles induce reactive gliosis and neuronal death whereas continuous exposure to IH cycles reduced the rate of neuronal death and induced neuronal branching on surviving neurons. We hypothesize that HIF-1alpha and S100B glial factor may improve neuronal survival under hypoxic conditions and propose that the death/survival/re-growth process observed here may underlie brain circuitry changes in humans with SA.


Assuntos
Encéfalo , Gliose/etiologia , Neuroglia/patologia , Neurônios/patologia , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Caspases/metabolismo , Morte Celular/fisiologia , Modelos Animais de Doenças , Masculino , Proteínas do Tecido Nervoso/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Ratos Wistar , Síndromes da Apneia do Sono/metabolismo , Fatores de Tempo
12.
Mol Neurobiol ; 57(2): 879-895, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31522382

RESUMO

Reactive astrogliosis occurs upon focal brain injury and in neurodegenerative diseases. The mechanisms that propagate reactive astrogliosis to distal parts of the brain, in a rapid wave that activates astrocytes and other cell types along the way, are not completely understood. It is proposed that damage-associated molecular patterns (DAMP) released by necrotic cells from the injury core have a major role in the reactive astrogliosis initiation but whether they also participate in reactive astrogliosis propagation remains to be determined. We here developed a Bayesian computational model to define the most probable model for reactive astrogliosis propagation. Starting with experimental data from GFAP-immunostained reactive astrocytes, we defined five types of astrocytes based on morphometrical cues and registered the position of each reactive astrocyte cell type in the hemisphere ipsilateral to the injured site after 3 and 7 days post-ischemia. We developed equations for the changes in DAMP concentration (due to diffusion, binding to receptors or degradation), soluble mediators secretion, and for the evolution reactive astrogliosis. We tested four predefined models based on abovementioned previous hypothesis and modifications to it. Our results showed that DAMP diffusion alone has not justified the reactive astrogliosis propagation as previously assumed. Only two models succeeded in accurately reproducing the experimentally measured data and they highlighted the role of microglia and the glial secretion of soluble mediators to sustain the reactive signal and activating neighboring astrocytes. Thus, our in silico analysis proposes that glial cells behave as repeater stations of the injury signal in order to propagate reactive astrogliosis.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Gliose/metabolismo , Microglia/metabolismo , Animais , Teorema de Bayes , Lesões Encefálicas/metabolismo , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/metabolismo , Masculino , Ratos Wistar
13.
Front Behav Neurosci ; 14: 32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256321

RESUMO

Despite the constant development of new antiepileptic drugs (AEDs), more than 30% of patients develop refractory epilepsy (RE) characterized by a multidrug-resistant (MDR) phenotype. The "transporters hypothesis" indicates that the mechanism of this MDR phenotype is the overexpression of ABC transporters such as P-glycoprotein (P-gp) in the neurovascular unit cells, limiting access of the AEDs to the brain. Recent clinical trials and basic studies have shown encouraging results for the use of cannabinoids in RE, although its mechanisms of action are still not fully understood. Here, we have employed astrocytes and vascular endothelial cell cultures subjected to hypoxia, to test the effect of cannabidiol (CBD) on the P-gp-dependent Rhodamine-123 (Rho-123) efflux. Results show that during hypoxia, intracellular Rho-123 accumulation after CBD treatment is similar to that induced by the P-gp inhibitor Tariquidar (Tq). Noteworthy, this inhibition is like that registered in non-hypoxia conditions. Additionally, docking studies predicted that CBD could behave as a P-gp substrate by the interaction with several residues in the α-helix of the P-gp transmembrane domain. Overall, these findings suggest a direct effect of CBD on the Rho-123 P-gp-dependent efflux activity, which might explain why the CBD add-on treatment regimen in RE patients results in a significant reduction in seizure frequency.

14.
J Neurosci Res ; 87(8): 1892-903, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19156869

RESUMO

The p75 neurotrophin receptor (p75(NTR)) is involved in neuronal functions ranging from induction of apoptosis and growth inhibition to the promotion of survival. p75(NTR) expression is induced in the central nervous system (CNS) by a range of pathological conditions, where it seems to have a role in neuronal death and axonal growth inhibition. The cellular mechanisms driving p75(NTR) expression in cell lines and primary neurons is Sp1 dependent (Ramos et al. [2007] J. Neurosci. 27:1498). In this study, we analyzed the spatiotemporal profile of p75(NTR) expression after an ischemic lesion induced by cortical devascularization (CD). Our results show that p75(NTR) expression occurs in isolated neurons of the ischemic lesion site. The p75(NTR+) neurons presented morphological alterations and active caspase-3 staining. Some p75(NTR+) neurons were also positive for sortilin. The peak of p75(NTR) expression was localized 3 days postlesion (3DPL) in the penumbra. Sp1 transcription factor nuclear localization was observed in p75(NTR+) neurons. The overall level of Sp1 expression was increased until 14DPL on the ipsilateral hemisphere. With primary cortical neurons, we demonstrated that p75(NTR) expression is induced by excitotoxic stress and correlated with increased Sp1 abundance. We conclude that p75(NTR) expression is localized in selected neurons of the ischemic lesion and that these neurons are probably condemned to apoptotic cell death. In primary neuronal culture, it is clear that excitotoxicity and Sp1 are involved in induction of p75(NTR) expression, although, in vivo, some additional mechanisms are likely to be involved in the control of p75(NTR) expression in specific neurons in vivo.


Assuntos
Isquemia Encefálica/metabolismo , Córtex Cerebral/metabolismo , Transtornos Cerebrovasculares/metabolismo , Neurônios/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Apoptose/fisiologia , Infarto Encefálico/metabolismo , Infarto Encefálico/patologia , Infarto Encefálico/fisiopatologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Caspase 3/metabolismo , Células Cultivadas , Artérias Cerebrais/patologia , Artérias Cerebrais/fisiopatologia , Artérias Cerebrais/cirurgia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiopatologia , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/fisiopatologia , Modelos Animais de Doenças , Masculino , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Proteínas do Tecido Nervoso , Neurônios/patologia , Neurotoxinas/metabolismo , Ratos , Ratos Wistar , Receptores de Fatores de Crescimento , Fator de Transcrição Sp1/metabolismo , Estresse Fisiológico/fisiologia , Regulação para Cima/fisiologia
15.
Front Neurosci ; 13: 750, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379495

RESUMO

Erythropoietin (EPO) is not only a hormone that promotes erythropoiesis but also has a neuroprotective effect on neurons attributed to its known anti-apoptotic action. Previously, our group has demonstrated that recombinant-human EPO (rHu-EPO) can protect neurons and recovery motor activity in a chemical focal brain hypoxia model (Merelli et al., 2011). We and others also have reported that repetitive seizures can mimic a hypoxic- like condition by HIF-1α nuclear translocation and high neuronal expression P-gp. Here, we report that a single 20-min status epilepticus (SE) induces P-gp and EPO-R expression in cortical pyramidal neurons and only P-gp expression in astrocytes. In vitro, excitotoxic stress (300 µM glutamate, 5 min), can also induce the expression of EPO-R and P-gp simultaneously with both HIF-1α and NFkB nuclear translocation in primary cortical neurons. Primary astrocytes exposed to chemical hypoxia with CoCl2 (0.3 mM, 6 h) increased P-gp expression as well as an increased efflux of Rhodamine 123 (Rho123) that is a P-gp substrate. Tariquidar, a specific 3er generation P-gp-blocker was used as an efflux inhibitor control. Astrocytes treated with rHu-EPO showed a significant recovery of the Rho123 retention in a similar way as seen by Tariquidar, demonstrating for first time that rHu-EPO can inhibit the P-gp-dependent efflux activity. Taking together, these data suggest that stimulation of EPO depending signaling system could not only play a central role in brain cell protection, but this system could be a new tool for reverse the pharmacoresistant phenotype in refractory epilepsy as well as in other pharmacoresistant hypoxic brain diseases expressing P-gp.

16.
Front Cell Neurosci ; 13: 380, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507379

RESUMO

Temporal Lobe Epilepsy (TLE) is the most common form of human epilepsy and available treatments with antiepileptic drugs are not disease-modifying therapies. The neuroinflammation, neuronal death and exacerbated plasticity that occur during the silent period, following the initial precipitating event (IPE), seem to be crucial for epileptogenesis. Damage Associated Molecular Patterns (DAMP) such as HMGB-1, are released early during this period concomitantly with a phenomenon of reactive gliosis and neurodegeneration. Here, using a combination of primary neuronal and glial cell cultures, we show that exposure to HMGB-1 induces dendrite loss and neurodegeneration in a glial-dependent manner. In glial cells, loss of function studies showed that HMGB-1 exposure induces NF-κB activation by engaging a signaling pathway that involves TLR2, TLR4, and RAGE. In the absence of glial cells, HMGB-1 failed to induce neurodegeneration of primary cultured cortical neurons. Moreover, purified astrocytes were unable to fully respond to HMGB-1 with NF-κB activation and required microglial cooperation. In agreement, in vivo HMGB-1 blockage with glycyrrhizin, immediately after pilocarpine-induced status epilepticus (SE), reduced neuronal degeneration, reactive astrogliosis and microgliosis in the long term. We conclude that microglial-astroglial cooperation is required for astrocytes to respond to HMGB-1 and to induce neurodegeneration. Disruption of this HMGB-1 mediated signaling pathway shows beneficial effects by reducing neuroinflammation and neurodegeneration after SE. Thus, early treatment strategies during the latency period aimed at blocking downstream signaling pathways activated by HMGB-1 are likely to have a significant effect in the neuroinflammation and neurodegeneration that are proposed as key factors in epileptogenesis.

17.
Mol Neurobiol ; 55(5): 3875-3888, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28547529

RESUMO

Astrocytes react to brain injury with a generic response known as reactive gliosis, which involves activation of multiple intracellular pathways including several that may be beneficial for neuronal survival. However, by unknown mechanisms, reactive astrocytes can polarize into a proinflammatory phenotype that induces neurodegeneration. In order to study reactive gliosis and astroglial polarization into a proinflammatory phenotype, we used cortical devascularization-induced brain ischemia in Wistar rats and primary astroglial cell cultures exposed to oxygen-glucose deprivation (OGD). We analyzed the profile of TLR4 expression and the consequences of its activation by gain- and loss-of-function studies, and the effects produced by the activation of triggering receptor expressed on myeloid cells-2 (TREM-2), a negative regulator of TLR4 signaling. Both OGD exposure on primary astroglial cell cultures and cortical devascularization brain ischemia in rats induced TLR4 expression in astrocytes. In vivo, astroglial TLR4 expression was specifically observed in the ischemic penumbra surrounding necrotic core. Functional studies showed that OGD increased the astroglial response to the TLR4 agonist lipopolysaccharide (LPS), and conversely, TLR4 knockout primary astrocytes had impaired nuclear factor kappa-B (NF-κB) activation when exposed to LPS. In gain-of-function studies, plasmid-mediated TLR4 over-expression exacerbated astroglial response to LPS as shown by sustained NF-κB activation and increased expression of proinflammatory cytokines IL-1ß and TNFα. TREM-2 expression, although present in naïve primary astrocytes, was induced by OGD, LPS, or high-mobility group box 1 protein (HMGB-1) exposure. TREM-2 activation by antibody cross-linking or the overexpression of TREM-2 intracellular adaptor, DAP12, partially suppressed LPS-induced NF-κB activation in purified astrocytic cultures. In vivo, TREM-2 expression was observed in macrophages and astrocytes located in the ischemic penumbra. While TREM-2+ macrophages were abundant at 3 days post-lesion (DPL) in the ischemic core, TREM-2+ astrocytes persisted in the penumbra until 14DPL. This study demonstrates that TLR4 expression increases astroglial sensitivity to ligands facilitating astrocyte conversion towards a proinflammatory phenotype, and that astroglial TREM-2 modulates this response reducing the downstream NF-κB activation. Therefore, the availability of TLR4 and TREM-2 ligands in the ischemic environment may control proinflammatory astroglial conversion to the neurodegenerative phenotype.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Polaridade Celular , Inflamação/patologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Isquemia Encefálica/patologia , Células Cultivadas , Glucose/deficiência , Ligantes , Macrófagos/metabolismo , Masculino , NF-kappa B/metabolismo , Oxigênio , Fenótipo , Ratos Wistar
18.
J Neurol Sci ; 258(1-2): 84-92, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17459414

RESUMO

Neuronal damage after stroke-associated brain hypoxia is a leading cause of long-term disability and death. The refractoriness to therapeutic strategies for neuroprotection after 3 h post brain ischemia is poorly understood. P-glycoprotein (P-gp), the multidrug resistance gene (MDR-1) product is normally expressed at blood-brain-barrier. P-gp neuronal expression has been demonstrated in refractory epilepsy and after brain ischemia. In this report we investigated the hypoxia-induced neuronal P-gp expression after local injection of CoCl(2) (1-200 mM) in the fronto-parietal cortex of male adult rats (Bregma -1.30 mm) by stereotaxic surgery. P-gp immunostaining of brain slides was analyzed using specific monoclonal antibodies and double immunolabeling was done with specific astrocytic and neuronal markers. Five days after injection of 1 mM CoCl(2), P-gp expression surrounding the lesion site was observed in neurons, astrocytic end-foot on capillary blood vessels and endothelial cells on blood vessels. Higher CoCl(2) doses (200 mM) resulted in additional P-gp immunostaining of the entire astrocytic and neuronal cytoplasm. Electron microscopy (EM) studies showed alterations in neurons as early as 6 h after the CoCl(2) injection. P-gp expression in hypoxic neurons and astrocytic end-foot could potentially impair of drugs access to the brain parenchyma thus suggesting the presence of two P-gp-based pumping systems (one in astrocytes and other in the hypoxic neurons) that are able to behave as a previously unnoticed obstacle for pharmacological strategies of neuroprotection.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Expressão Gênica/fisiologia , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Neurônios/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Antimutagênicos/administração & dosagem , Cobalto/administração & dosagem , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Hipóxia/induzido quimicamente , Hipóxia/patologia , Masculino , Microscopia Eletrônica de Transmissão/métodos , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Lobo Parietal/efeitos dos fármacos , Lobo Parietal/metabolismo , Lobo Parietal/patologia , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Wistar
19.
Pharmaceuticals (Basel) ; 10(4)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182533

RESUMO

The lithium-pilocarpine model of epilepsy reproduces several features of temporal lobe epilepsy in humans, including the chronological timeline of an initial latency period followed by the development of spontaneous seizures. Epilepsy therapies in humans are implemented, as a rule, after the onset of the spontaneous seizures. We here studied the potential effect on epileptogenesis of starting an early treatment during the latency period, in order to prevent the development of spontaneous seizures. Adult male Wistar rats were treated with 3 mEq/kg LiCl, and 20 h later 30 mg/kg pilocarpine. Once status epilepticus (SE) was achieved, it was allowed to last for 20 min, and then motor seizures were controlled with the administration of 20 mg/kg diazepam. At 1DPSE (DPSE, days post-status epilepticus), animals started to receive 400 mg/kg/day gabapentin or saline for 4 days. At 5DPSE, we observed that SE induced an early profuse microglial and astroglial reactivity, increased synaptogenic trombospondin-1 expression and reduced AQP4 expression in astroglial ending feet. Blood brain barrier (BBB) integrity seemed to be compromised, as infiltrating NG2+ macrophages and facilitated access to the CNS was observed by transplanting eGFP+ blood cells and bone marrow-derived progenitors in the SE animals. The early 4-day gabapentin treatment successfully reduced microglial cell reactivity and blood-borne cell infiltration, without significantly altering the mRNA of proinflammatory cytokines IL-1ß and TNFα immediately after the treatment. After 21DSPE, another group of animals that developed SE and received 4 days of gabapentin treatment, were re-exposed to subconvulsive accumulative doses of pilocarpine (10 mg/kg/30 min) and were followed by recording the Racine scale reached. Early 4-day gabapentin treatment reduced the Racine scale reached by the animals, reduced animal mortality, and reduced the number of animals that achieved SE (34% vs. 72%). We conclude that early gabapentin treatment following SE, during the latency period, is able to reduce neuroinflammation and produces a persistent effect that limits seizures and increases convulsive threshold, probably by restricting microglial reactivity and spurious synaptogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA