Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 26(3): 483-498, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38293890

RESUMO

Mercury-bearing nano-mineral assemblages (Hg-NMAs) are chemically and mineralogically heterogeneous, micrometer-sized aggregates of nanoparticles (NPs) found in contaminated soils and sediments. Although these NMAs control sequestration and release of Hg that is a global contaminant, our understanding is limited with respect to the conditions of different types of Hg-NMAs, the diversity of its minerals, the size distribution of its NPs and whether mineral replacement and alteration reactions in these NMAs result in the release of Hg-bearing NPs. For this purpose, Hg-NMAs in four sediment samples from the Guanajuato Mining District (GMD) in Mexico, a region that was polluted by Hg and silver (Ag) due to historical mining involving Hg amalgamation, are characterized at the micro- and nanoscale. Microscale examinations with SEM show that the majority of Hg-NMAs occurs in mineral surface coatings (MSC) and fillings in fractures within quartz grains and are enriched in Hg and sulfur (S) relative to Ag, and in S and selenium (Se) relative to chloride (Cl). Examinations at the nanoscale show that Hg-NMAs contain (a) residuals of the patio process such as amalgam phases and elemental Ag; (b) associations of Hg- and Ag-sulfide NPs with pyrite and marcasite; (c) associations of Hg- and Ag-sulfide NPs with goethite and clay minerals along the rims of the MSC. The latter minerals replaced the Fe-Si-rich matrix at high-water rock ratios most likely due to an increase in porosity during flooding of the Pastita River. Consequently, the rims are depleted in Hg-Ag-sulfide NPs relative to the unaltered Fe-Si-rich matrices indicating that changes in the physiochemical conditions of soils and sediments in the GMD can result in the release of Hg-Ag-bearing NPs. In this context, this study discusses whether release and dissolution of Hg-Ag-bearing NPs contribute to the recently observed elevated gaseous elemental Hg concentrations in the soil, interstitial air and ambient air, and to the fate and effects of Hg in local aquatic environments.


Assuntos
Mercúrio , Nanopartículas , Mercúrio/análise , Prata , Minerais/química , Solo/química , Sulfetos
2.
Sci Total Environ ; 843: 157093, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779723

RESUMO

Silver (Ag) production in Hispanic America between the 16th and 19th centuries is thought to be one of the largest sources of anthropogenic mercury (Hg) emissions in history. Recent reviews of the chemistry behind the patio process, which used Hg amalgamation to extract Ag from ore, reveal that a large amount of the Hg may not have been immediately released to the atmosphere; instead, it may have been captured in the form of calomel (Hg2Cl2, in which Hg exists as monovalent HgI) and remained in the local environment. Here we show that Hg used in the patio process centuries ago in the Guanajuato Mining District of Mexico continues to elevate present-day concentrations of gaseous elemental mercury (GEM) throughout the region. In the ground-level air, GEM ranged from 8 to 454 ng m-3, exceeding the Northern Hemispheric average (~1.4 ng m-3) by up to two orders of magnitude. Much higher concentrations, up to 44,700 ng m-3, were found in the interstitial air of reprocessed mineral wastes, sediment, and soil. These highly elevated present-day GEM values are due, at least in part, to the disproportionation of legacy calomel, as supported by the presence of HgI in the reprocessed wastes and by the GEM release pattern from calomel disproportionation. Our results imply that the contribution of historical Ag refining to atmospheric Hg emissions must be re-evaluated to account for calomel and its subsequent disproportionation and releases of GEM to the present-day.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Mercúrio/análise , México , Prata
3.
Toxics ; 9(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34822698

RESUMO

Mine wastes from the La Aurora mine in the state of Guanajuato were generated by the flotation process and placed in four tailing dumps on the local stream while the plant operated. Given that these wastes contain toxic elements, it is important to establish their impact on the quality of several surrounding natural sources of water that are considered potential drinking water supplies. This study identified four water source types, in which the contents of arsenic (As), mercury (Hg), and thallium (Tl) were exceeded, according to international guideline values for drinking water quality. The first type of aqueous sample corresponded to leachates produced by rainwater infiltration in tailings and water-mineral waste interactions. The second type corresponded to surface water along the Xichú and La Laja Streams, and the third and fourth types involved two groundwater well samples and spring samples, respectively. The Chiquito Stream was used as a reference area that had not been impacted by the mine wastes. The isotopic signatures associated with δ34Ssulfate and δ18Osulfate compositions from the El Ojo de Agua spring are similar to those of the Santa María River and are different from those of the mine waste leachates. This study shows evidence of the presence of As in the El Ojo de Agua spring, which results from dissolution of secondary mineral phases that were produced by alteration of the mine wastes, which then migrated along the Xichú Stream system until reaching the spring. These As-bearing fine particles are prone to dissolution when in contact with this water source. Principal component analysis revealed that the observed As, Tl, and Hg can be attributed to weathering of the mine wastes. However, the results suggest that a natural contribution of these elements could be associated with rainwater-igneous rock interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA