Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 156(15): 154501, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459289

RESUMO

We present here the results of high-pressure broadband dielectric spectroscopy (BDS) measurements for a mixture of liquid-crystalline drug itraconazole (ITZ) and glycerol (GLY) at a critical concentration of 5% w/w in which the nematic order is eliminated. In the investigated system, smectic-A to isotropic phase transition leaves a clear fingerprint on the dielectric response, allowing for a phase diagram creation using BDS data. By following the α-relaxation dynamics under different thermodynamic conditions, we provide insights into the effect of pressure on temperature and the phenomenology of smectic-A to the isotropic phase transition. Additional measurements of specific volume as a function of pressure and temperature provide us with a deeper insight into material properties that could be analyzed comprehensively via the equation of state. We proved the validity of the density scaling concept, showing that the mixture's complexity does not exclude thermodynamic scaling of dynamic properties related to the α-process in the smectic-A phase. The low value of scaling exponent γ = 2.00 ± 0.02 and a high ratio of the activation energy at constant volume, EV, to the activation enthalpy at constant pressure, HP, indicate that temperature is a dominant variable controlling α-relaxation dynamics in the ordered smectic-A phase of the ITZ-GLY mixture.


Assuntos
Itraconazol , Cristais Líquidos , Glicerol , Itraconazol/química , Cristais Líquidos/química , Simulação de Dinâmica Molecular , Transição de Fase
2.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077212

RESUMO

In this paper, we thoroughly investigated the physical stability of the anti-inflammatory drug etoricoxib, which has been reported earlier to be resistant to recrystallization in its glassy and supercooled states at ambient pressure. Our unique application of the standard refractometry technique showed that the supercooled liquid of the drug was able to recrystallize during isothermal experiments in atmospheric conditions. This enabled us to determine the crystallization onset timescale and nucleation energy barrier of etoricoxib for the first time. As the physical instability of etoricoxib requires working out an efficient method for improving the drug's resistance to recrystallization to maintain its amorphous form utility in potential pharmaceutical applications, we focused on finding a solution to this problem, and successfully achieved this purpose by preparing binary mixtures of etoricoxib with octaacetylmaltose. Our detailed thermal, refractometry, and molecular dynamics studies of the binary compositions near the glass transition revealed a peculiar behavior of the glass transition temperatures when changing the acetylated disaccharide concentration in the mixtures. Consequently, the anti-plasticization effect on the enhancement of physical stability could be excluded, and a key role for specific interactions in the improved resistance to recrystallization was expected. Invoking our previous results obtained for etoricoxib, the chemically similar drug celecoxib, and octaacetylmaltose, we formulated a hypothesis about the molecular mechanisms that may cause an impediment to crystal nuclei formation in the amorphous mixtures of etoricoxib with octaacetylmaltose. The most plausible scenario may rely on the formation of hydrogen-bonded heterodimers of the drug and excipient molecules, and the related drop in the population of the etoricoxib homodimers, which disables the nucleation. Nevertheless, this hypothesis requires further investigation. Additionally, we tested some widely discussed correlations between molecular mobility and crystallization properties, which turned out to be only partially satisfied for the examined mixtures. Our findings constitute not only a warning against manufacturing the amorphous form of pure etoricoxib, but also evidence for a promising outcome for the pharmaceutical application of the amorphous compositions with octaacetylmaltose.


Assuntos
Simulação de Dinâmica Molecular , Vitrificação , Varredura Diferencial de Calorimetria , Estabilidade de Medicamentos , Etoricoxib , Excipientes/química
3.
Mol Pharm ; 15(7): 2807-2815, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29791165

RESUMO

Rational selection of polymers for amorphous drug stabilization is necessary for further successful development of solid dispersion technology. In this paper, we investigate the effect of polymer chain length on the inhibition of amorphous drug recrystallization. To consider this problem, we prepared a drug-polymer blend (in 10:1 drug to polymer ratio) containing bicalutamide (BIC) and polyvinylpyrrolidone (PVP) with different chain lengths K10, K30, and K90. We applied broadband dielectric spectroscopy to compare the molecular dynamics of investigated samples and thoroughly recognize their crystallization tendencies from supercooled liquid state. Despite the lack of differences in molecular dynamics, we noticed significant changes in their crystallization rates. To rationalize such behavior, we performed positron annihilation lifetime spectroscopy measurements. The results showed that the value of free volume was the highest for blend with PVP K90, which at the same time was characterized by the greatest tendency to crystallize. We postulate that the polymer chain, depending on its length, can have different configurations in the space, leading to better or worse sample stabilization. Our results highlight how important is detailed understanding of physical properties of polymers for judicious selection of the best stabilization approach.


Assuntos
Anilidas/química , Excipientes/química , Nitrilas/química , Povidona/química , Compostos de Tosil/química , Cristalização , Espectroscopia Dielétrica , Estabilidade de Medicamentos , Simulação de Dinâmica Molecular , Solubilidade
4.
Mol Pharm ; 15(9): 3969-3978, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30052449

RESUMO

In the case of formulations with amorphous active pharmaceutical ingredients the risk of pressure-induced recrystallization should be carefully considered. We reported here that supercooled etoricoxib (ETB), which was found as a relatively stable system with low crystallization tendency at atmospheric pressure, crystallized quickly after compression. The observed strong pressure-dependence of the induction period suggests that during compression the first step of crystallization that is nucleation may be accelerated. To overcome the experimental challenge associated with studies at elevated temperatures and high pressures we applied broadband dielectric spectroscopy. Dielectric measurements gave us detailed insight into crystallization kinetics of ETB at varying ( T, p) conditions corresponding to the supercooled liquid state of a drug. We found that pressure-induced recrystallization of supercooled ETB, constituting a serious impediment from a technological point of view, can be efficiently inhibited when amorphous solid dispersion containing ETB and polymer polyvinylpyrrolidone PVP (10% w/w) was prepared. Besides, we performed the comprehensive analysis of molecular dynamics of both systems at elevated pressure to address some fundamental issues related to the pressure sensitivity of their supercooled dynamics.


Assuntos
Etoricoxib/química , Povidona/química , Varredura Diferencial de Calorimetria , Cristalização , Estabilidade de Medicamentos
5.
Mol Pharm ; 15(6): 2455-2465, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29738666

RESUMO

Currently, a research hotspot in amorphous active pharmaceutical ingredients (APIs) is to understand the key factors that dominate recrystallization and to develop effective methods for stabilizing amorphous forms. Consequently, we investigated the influence of the global molecular mobility and structural properties on the crystallization tendency of three 1,4-dihydropyridine derivatives (nifedipine, nisoldipine, and nimodipine) in their supercooled states using differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS) techniques. The BDS is also employed to monitor the isothermal crystallization kinetics of supercooled nifedipine and nimodipine at T = 333 K under ambient pressure. As a result, we found that nimodipine exhibits much slower crystallization in comparison to nifedipine. However, nimodipine crystallizes much faster when as little as 10 MPa of pressure is exerted on sample. Such compression-induced crystallization of nimodipine as well as the inherent instability of nifedipine can be solved effectively by preparing coamorphous nifedipine/nimodipine combinations. Interestingly, the high physical stability of nifedipine/nimodipine mixtures is achieved despite the fact that the nimodipine acts as a plasticizer.


Assuntos
Composição de Medicamentos/métodos , Nifedipino/química , Nimodipina/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cristalização , Espectroscopia Dielétrica , Estabilidade de Medicamentos , Simulação de Dinâmica Molecular
6.
Mol Pharm ; 15(5): 1928-1940, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29584436

RESUMO

In this article we thoroughly investigated the physical stability of the amorphous form of a chloramphenicol drug. The tendency toward recrystallization of this drug has been examined (i) at nonisothermal conditions by means of a DSC technique; (ii) at isothermal conditions and temperature close to Troom by means of dielectric spectroscopy; (iii) at isothermal conditions and elevated temperatures of T = 323 K and 338 K by dielectric spectroscopy; and (iv) at conditions imitating the manufacturing procedure (i.e., elevated temperature and compression procedure). Our investigations have shown that amorphous chloramphenicol, stored at both standard storage and elevated temperature conditions, does not reveal a tendency toward recrystallization. However, compression significantly changes this behavior and destabilizes the examined compound. We found that due to chemical equilibration of the sample, the elongation of the storage time before compression might improve the physical stability of the examined pharmaceutical exposed to compression 34-times.


Assuntos
Cloranfenicol/química , Varredura Diferencial de Calorimetria/métodos , Cristalização/métodos , Espectroscopia Dielétrica/métodos , Estabilidade de Medicamentos , Armazenamento de Medicamentos/métodos , Simulação de Dinâmica Molecular , Pressão , Temperatura , Difração de Raios X/métodos
7.
Phys Chem Chem Phys ; 20(34): 21925-21933, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-29862402

RESUMO

Secondary relaxations persistent in the glassy state after structural arrest are especially relevant for the properties of the glass. A major thrust in research in dynamics of glass-forming liquids is to identify what secondary relaxations exhibit a connection to the structural relaxation and are hence more relevant. Via the Coupling Model, secondary relaxations having such connection have been identified by properties similar to the primitive relaxation of the Coupling Model and are called the Johari-Goldstein (JG) ß-relaxations. They involve the motion of the entire molecule and act as the precursor of the structural α-relaxation. The change in dynamics of the secondary relaxation by aging an ordinary glass is one way to understand the connection between the two relaxations, but the results are often equivocal. Ultrastable glasses, formed by physical vapour deposition, exhibit density and enthalpy levels comparable to ordinary glasses aged for thousands of years, as well as some particular molecular arrangement. Thus, ultrastable glasses enable the monitoring of the evolution of secondary processes in case aging does not provide any definitive information. Here, we study the secondary relaxation of several ultrastable glasses to identify different types of secondary relaxations from their different relationship with the structural relaxation. We show the existence of two clearly differentiated groups of relaxations: those becoming slower in the ultrastable state and those becoming faster, with respect to the ordinary unaged glass. We propose ultrastability as a way to distinguish between secondary processes arising from the particular microstructure of the system and those connected in properties to and acting as the precursor of the structural relaxation in the sense of the Coupling Model.

8.
Phys Chem Chem Phys ; 20(44): 28211-28222, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30398253

RESUMO

In this paper, we applied broadband dielectric spectroscopy (BDS) to investigate the molecular dynamics of three 4-methyl-1,3-dioxolane derivatives (MD) whose chemical structures differ in the length of non-polar alkyl side chains. We notice that small changes within their chemical structures have a pronounced impact on parameters characterizing the supercooled dynamics of the compounds selected for this study. Our detailed analysis of the dielectric response reveals that in the supercooled-liquid state besides the structural α-relaxation a sub-α Debye-like relaxation can be clearly distinguished. The observed two relaxation regimes mirror the structural complexity of the investigated MD derivatives. The amphiphilic nature of the investigated compounds and possible interactions between non-polar side chains can rationalize the observed behavior. To follow the molecular arrangement of MD derivatives at low temperatures, we also carried out Raman measurements. Additionally, we performed BDS measurements at elevated pressures which revealed that, as a result of compression, the sub-α contribution to the dielectric response disappeared. The paper concludes with a discussion of open questions about the possible molecular origin of the observed sub-α Debye-like process. These results provide fresh insight into the puzzling nature of the slow supramolecular relaxation modes in low-molecular glass forming liquids.

9.
Phys Chem Chem Phys ; 20(6): 3939-3945, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29360120

RESUMO

Secondary relaxations are fundamental for their impact in the properties of glasses and for their inseparable connection to the structural relaxation. Understanding their density dependence and aging behavior is key to fully address the nature of glasses. Ultrastable glasses establish a new benchmark to study the characteristics of secondary relaxations, since their enthalpy and density levels are unattainable by other routes. Here, we use dielectric spectroscopy at ambient and elevated pressures to study the characteristics of the secondary relaxation in ultrastable etoricoxib, reporting a 71% decrease in dielectric strength and one decade increase in relaxation time compared to the ordinary glass. Interestingly, we find an unprecedented connection between secondary and structural relaxations in ultrastable etoricoxib in exactly the same manner as in the ordinary glass, manifested through different properties, such as aging and devitrification. These results further support and extend the general validity of the connection between the secondary and structural relaxation.

10.
Mol Pharm ; 14(4): 1071-1081, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28231007

RESUMO

In this paper, we investigated the molecular mobility and physical stability of amorphous bicalutamide, a poorly water-soluble drug widely used in prostate cancer treatment. Our broadband dielectric spectroscopy measurements and differential scanning calorimetry studies revealed that amorphous BIC is a moderately fragile material with a strong tendency to recrystallize from the amorphous state. However, mixing the drug with polymer polyvinylpyrrolidone results in a substantial improvement of physical stability attributed to the antiplasticizing effect governed by the polymer additive. Furthermore, IR study demonstrated the existence of specific interactions between the drug and excipient. We found out that preparation of bicalutamide-polyvinylpyrrolidone mixture in a 2-1 weight ratio completely hinder material recrystallization. Moreover, we determined the time-scale of structural relaxation in the glassy state for investigated materials. Because molecular mobility is considered an important factor governing crystallization behavior, such information was used to approximate the long-term physical stability of an amorphous drug and drug-polymer systems upon their storage at room temperature. Moreover, we found that such systems have distinctly higher water solubility and dissolution rate in comparison to the pure amorphous form, indicating the genuine formulation potential of the proposed approach.


Assuntos
Antineoplásicos/química , Polímeros/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cristalização/métodos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Excipientes/química , Cinética , Simulação de Dinâmica Molecular , Povidona/química , Solubilidade
11.
Sci Rep ; 14(1): 887, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195815

RESUMO

We used dielectric spectroscopy to access the molecular dynamics of three isomers with a structure based on a sizable, partially rigid, and non-polar core connected to a polar phenylene unit differing in the position of the polar group, and, consequently, the direction and magnitude of the dipole moment to address the question how unique molecular properties, in particular large size and elongated shape, affect the dynamics. The position of the polar group differentiates the molecular shape and isomer's anisotropy and leads to different thermal and dynamic properties of the isomers. The shape of permittivity loss spectra was governed by magnitudes of the longitudinal and transverse components of dipole moment to a large extent. For para isomer with negligible traverse component of dipole moment, the narrowest loss peak was found while for meta isomer, the bimodal loss peak was observed at high temperatures. Its shape evolved on cooling limiting the possibility of individual mode separation near glass transition where the dynamics were more cooperative. High-pressure dielectric studies showed that sizable isomers were characterized by the pronounced sensitivity of glass transition temperature, Tg, to compression. Observed high activation volumes, such as 735 cm3/mol at Tg for para isomer, were found to correlate with the length scale of dynamic cooperativity. The number of dynamically correlated molecules depended on molecular shape and varied among isomers while the determined values were much smaller than that reported for other glass-forming liquids. We discussed here the obtained results in the context of the specific properties of the systems studied showing the overriding role of anisotropy.

12.
J Phys Chem Lett ; 15(9): 2595-2600, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38416777

RESUMO

We investigated the secondary relaxation behavior in rotor molecules in a glassy and crystalline state by using the dielectric method. Without changing the molecular source of secondary relaxation, only by modifying the environment around the rotating unit we observed notable variations in spectral parameters. Our results show that internal rotation, like a probe, can sample the immediate surroundings with high sensitivity to molecular-level changes that impact the rotation parameters. Our research offers a new perspective on the dielectric behavior of internal secondary relaxations and challenges the paradigm of their irrelevant nature.

13.
J Phys Chem Lett ; 12(46): 11303-11307, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34780195

RESUMO

We present the results of dielectric measurements for three sizable glass-formers with identical nonpolar cores linked to various dipole-labeled rotors that shed new light on the picture of reorientation of anisotropic systems with significant moment of inertia revealed by broadband dielectric spectroscopy. The dynamics of sizable glass-formers formed by partially rigid molecular cores linked to small polar rotors in many respects differs from that of typical glass-formers. For instance, the extraordinarily large prefactors (τ0 > 10-12 s) in the Vogel-Fulcher-Tammann equation were found. The rich and highly diverse relaxation pattern was governed by the location of a dipole, its ability to rotate freely, and the degree of coupling to the motion of the entire sizable system.

14.
Eur J Pharm Sci ; 159: 105697, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33568330

RESUMO

The article describes the preparation and characterization of binary mixtures of two antiandrogens used in prostate cancer treatment, i.e. flutamide (FL) and bicalutamide (BIC), as well as their ternary mixtures with either poly(methyl methacrylate-co-ethyl acrylate) (MMA/EA) or polyvinylpyrrolidone (PVP). The samples were converted into amorphous form to improve their water solubility and dissolution rate. Broadband dielectric spectroscopy and differential scanning calorimetry revealed that FL-BIC (65%) (w/w) does not tend to crystallize from the supercooled liquid state. We made the assumption that the drug-to-drug weight ratio should be maintained as in the case of monotherapy so we decided to investigate the system containing FL and BIC in 15:1 (w/w) ratio with 30% additive of polymers as stabilizers. Our research has shown that only in the case of the FL-BIC-PVP mixture the crystallization has been completely inhibited, both in glassy and supercooled liquid state, which was confirmed by X-ray diffraction studies. In addition, we performed solubility and dissolution rate tests, which showed a significant improvement in solubility of ternary system as compared to its crystalline counterpart. Enhanced physical stability and water solubility of the amorphous ternary system makes it promising for further studies.

15.
RSC Adv ; 10(23): 13386-13393, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35492977

RESUMO

Chitosan biocoatings were successfully deposited on the Ti15Mo alloy surface via cataphoretic deposition from a solution of 1 g dm-3 of chitosan in 4% (aq) citric acid. The influence of the cataphoretic deposition parameters on quality and morphology of the obtained coatings were investigated using fluorescence and scanning electron microscopy. The functional groups' presence in chitosan chine were confirmed by ATR-FTIR methods. X-ray analysis revealed the amorphous structure of the chitosan coatings on the Ti15Mo alloy surface. The conducted studies also include assessing the abrasion resistance and adhesion to the substrate of the obtained chitosan coatings. The results show that utilizing the citric acid as a solvent results in the formation of pore free coatings. The yield of the electrophoretic deposition process was in the range of 2-10 mg of deposited chitosan per 1 cm2. The obtained coatings through the unique properties of chitosan are a promising biomaterial for application in medicine.

16.
Photodiagnosis Photodyn Ther ; 30: 101799, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32380255

RESUMO

BACKGROUND: Many aspects are currently being investigated, with the aim of improving the application of PDT in the clinic by rendering it more effective. One of the current trends focuses on the use of nanocarriers. The aim of this study is to describe novel photosensitizers among polyol amide chlorin e6 derivatives for photodynamic therapy (PDT) using liposomes. METHODS: In addition to their intracellular localization and antiproliferative activity against HCT116 cells, appropriate photophysical features have been determined (especially high 1O2 quantum yield production). RESULTS AND CONCLUSIONS: Fluorescent microscopy demonstrated that the compounds entered the endoplasmic reticulum (ER), lysosomes, mitochondria and partially the cytoplasm. All of the chlorins showed no dark cytotoxicity; however, high phototoxicity was observed. Using optical and electron microscopy, we investigated the impact of chlorin-based PDT upon cell damage leading to cell death. Chl ara 3 was identified as the most promising compound among polyol amide chlorin e6 derivatives and improved phototoxicity was observed as compared with a clinically approved temoporfin. Our results indicate that newly-synthesized chlorins seem to be promising candidates for PDT application, and two of them (chl ara 3 and chl mme 2) may create promising new drugs, both in the form of a free compound and as a liposomal formulation.


Assuntos
Lipossomos/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Células HCT116 , Humanos , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas/administração & dosagem
18.
Eur J Pharm Sci ; 136: 104947, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170526

RESUMO

The article describes the preparation and characterization of binary mixtures of two antiandrogens used in prostate cancer treatment, i.e. flutamide (FL) and bicalutamide (BIC), as well as their ternary mixtures with either poly(methyl methacrylate-co-ethyl acrylate) (MMA/EA) or polyvinylpyrrolidone (PVP). The samples were converted into amorphous form to improve their water solubility and dissolution rate. Broadband dielectric spectroscopy and differential scanning calorimetry revealed that FL-BIC (65%) (w/w) does not tend to crystallize from the supercooled liquid state. We made the assumption that the drug-to-drug weight ratio should be maintained as in the case of monotherapy so we decided to investigate the system containing FL and BIC in 15:1 (w/w) ratio with 30% additive of polymers as stabilizers. Our research has shown that only in the case of the FL-BIC-PVP mixture the crystallization has been completely inhibited, both in glassy and supercooled liquid state, which was confirmed by X-ray diffraction studies. In addition, we performed solubility and dissolution rate tests, which showed a significant improvement in solubility of ternary system as compared to its crystalline counterpart. Enhanced physical stability and water solubility of the amorphous ternary system makes it promising for further studies.


Assuntos
Anilidas/química , Flutamida/química , Nitrilas/química , Compostos de Tosil/química , Acrilatos/química , Cristalização/métodos , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Excipientes/química , Metilmetacrilato/química , Polímeros/química , Povidona/química , Solubilidade/efeitos dos fármacos
19.
EMBO Mol Med ; 11(12): e09571, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31709729

RESUMO

Granulocyte colony-stimulating factor (G-CSF) is used in clinical practice to mobilize cells from the bone marrow to the blood; however, it is not always effective. We show that cobalt protoporphyrin IX (CoPP) increases plasma concentrations of G-CSF, IL-6, and MCP-1 in mice, triggering the mobilization of granulocytes and hematopoietic stem and progenitor cells (HSPC). Compared with recombinant G-CSF, CoPP mobilizes higher number of HSPC and mature granulocytes. In contrast to G-CSF, CoPP does not increase the number of circulating T cells. Transplantation of CoPP-mobilized peripheral blood mononuclear cells (PBMC) results in higher chimerism and faster hematopoietic reconstitution than transplantation of PBMC mobilized by G-CSF. Although CoPP is used to activate Nrf2/HO-1 axis, the observed effects are Nrf2/HO-1 independent. Concluding, CoPP increases expression of mobilization-related cytokines and has superior mobilizing efficiency compared with recombinant G-CSF. This observation could lead to the development of new strategies for the treatment of neutropenia and HSPC transplantation.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Granulócitos/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Heme Oxigenase-1/deficiência , Protoporfirinas/farmacologia , Animais , Feminino , Mobilização de Células-Tronco Hematopoéticas , Heme Oxigenase-1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
20.
Sci Rep ; 8(1): 1380, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358585

RESUMO

Since the discovery of ultrastability, vapor deposition has emerged as a relevant tool to further understand the nature of glasses. By this route, the density and average orientation of glasses can be tuned by selecting the proper deposition conditions. Dielectric spectroscopy, on the other hand, is a basic technique to study the properties of glasses at a molecular level, probing the dynamics of dipoles or charge carriers. Here, and for the first time, we explore the dielectric behavior of vapor deposited N,N-Diphenyl-N,N'bis(methylphenyl)-1,1'-biphenyl-4,4'-diamines (TPD), a prototypical hole-transport material, prepared at different deposition temperatures. We report the emergence of a new relaxation process which is not present in the ordinary glass. We associate this process to the Maxwell-Wagner polarization observed in heterogeneous systems, and induced by the enhanced mobility of charge carriers in the more ordered vapor deposited glasses. Furthermore, the associated activation energy establishes a clear distinction between two families of glasses, depending on the selected substrate-temperature range. This finding positions dielectric spectroscopy as a unique tool to investigate the structural and electronic properties of charge transport materials and remarks the importance of controlling the deposition conditions, historically forgotten in the preparation of optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA