RESUMO
Studies of animal physiology not only provide valuable knowledge for the species in question, but also offer insights into human physiology. This thought is best highlighted by the 'Krogh Principle', which states "for many problems there is an animal on which it can be most conveniently studied". This graphical review focuses on three distinct stages of the oxygen transport cascade in which human exercise physiology knowledge has been enhanced by studies carried out in animal models. We begin by exploring ventilation, and the detrimental effects of cold, dry air on the airways in two sets of elite athletes, the cross-country skier and the racing sled dog. We then discuss the transport of oxygen via hemoglobin in humans and deer mice with relatively shifted oxygen dissociation curves. Finally, we consider the technical difficulties of measuring respiratory muscle blood flow in exercising humans and how an equine model can provide an understanding of the distribution of blood flow during exercise. These cases illustrate the complementary nature of physiological studies across species.
Assuntos
Fisiologia Comparada , Fenômenos Fisiológicos Respiratórios , Humanos , Animais , Cavalos , Cães , Modelos Animais , Pulmão , OxigênioRESUMO
KEY POINTS: Diaphragm fatigue may increase the intensity (sensory dimension) and unpleasantness (affective dimension) of dyspnoea, which may partially explain why diaphragm fatigue negatively affects exercise performance. We hypothesized that diaphragm fatigue would negatively affect exercise performance via increases in both the intensity and unpleasantness of dyspnoea, and that the increase in dyspnoea would be mechanistically linked to an increase in diaphragmatic EMG (EMGdi ), a surrogate measure of neural respiratory drive. Fatiguing the diaphragm prior to exercise reduced cycling performance and increased both the intensity and unpleasantness of dyspnoea. The change in submaximal dyspnoea unpleasantness was significantly correlated with the change in cycling performance. Pre-fatigue of the diaphragm did not increase EMGdi during exercise and is therefore unrelated to the increase in either the sensory or affective dimension of exertional dyspnoea. ABSTRACT: The purpose of this study was to examine the effect of diaphragm fatigue on the multidimensional components of dyspnoea and diaphragm electromyography (EMGdi ) during cycling. Sixteen healthy males (age = 27 ± 5 yr, VÌO2max = 45.8 ± 9.8 ml kg-1 min-1 ) completed two high-intensity, time-to-exhaustion cycling tests in randomized order: (i) inspiratory pressure threshold loading (PTL) prior to exercise to induce diaphragm fatigue (pre-DF) and (ii) no PTL (control). Diaphragm fatigue after PTL was confirmed via cervical magnetic stimulation of the phrenic nerves. Dyspnoea intensity and unpleasantness were measured throughout exercise with the 0-10 category-ratio Borg scale and following exercise using the Multidimensional Dyspnoea Profile (MDP). EMGdi was continuously recorded via a multipair oesophageal electrode catheter. Time-to-exhaustion decreased with pre-DF vs. control (9.0 ± 5.5 vs. 10.7 ± 7.5 min, P = 0.023). Pre-DF increased dyspnoea intensity ratings by 0.6 ± 1.0 Borg 0-10 units at the highest equivalent submaximal exercise time (HESET) a participant could achieve in both conditions (P = 0.020). Dyspnoea unpleasantness ratings increased with pre-DF by 0.5 ± 1.0, 0.7 ± 1.2 and 0.9 ± 1.4 (all P < 0.05) Borg 0-10 units during the 2nd, 3rd and 4th minutes of exercise, respectively. There was a significant correlation between the change in breathing unpleasantness ratings at HESET and the change in time-to-exhaustion (r = 0.66, P = 0.006). The immediate perception domain, a combination of peak unpleasantness and specific dyspnoea descriptor intensity ratings, was the only component of the MDP that was significantly increased with pre-DF (4.3 ± 1.9 vs. 3.6 ± 1.8, P = 0.04). There were no significant differences in EMGdi . In conclusion, diaphragm fatigue has negative effects on multiple domains of dyspnoea, which may partially explain why exercise performance decreases with it.
Assuntos
Diafragma , Dispneia , Eletromiografia , Exercício Físico , Humanos , Masculino , Fadiga Muscular , RespiraçãoRESUMO
RATIONALE: Lumacaftor/ivacaftor (LUM/IVA) modestly improves lung function following 1 month of treatment but it is unknown if this translates into improvements in exercise endurance and exertional symptoms. METHODS: Adult CF participants completed a symptom-limited constant load cycling test with simultaneous assessments of dyspnea and leg discomfort ratings pre- and 1 month post-initiation of LUM/IVA. RESULTS: Endurance time, exertional dyspnea and leg discomfort ratings at submaximal exercise did not change significantly. There was a significant inverse correlation between changes in leg discomfort and endurance time (r = - 0.88; p = 0.009) following 1-month of LUM/IVA. CONCLUSIONS: Overall, 1-month of LUM/IVA did not increase endurance time or modify exertional dyspnea or leg discomfort ratings. However, individuals who experienced a reduction in leg discomfort following LUM/IVA had an improvement in endurance time. Future studies with a larger sample size are needed to verify these findings and to assess the long-term effects of LUM/IVA on exercise outcomes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02821130. Registered July 1, 2016.
Assuntos
Aminofenóis/administração & dosagem , Aminopiridinas/administração & dosagem , Benzodioxóis/administração & dosagem , Fibrose Cística/tratamento farmacológico , Teste de Esforço/efeitos dos fármacos , Volume Expiratório Forçado/efeitos dos fármacos , Esforço Físico/efeitos dos fármacos , Ventilação Pulmonar/efeitos dos fármacos , Quinolonas/administração & dosagem , Adulto , Fibrose Cística/diagnóstico , Fibrose Cística/fisiopatologia , Combinação de Medicamentos , Teste de Esforço/métodos , Feminino , Volume Expiratório Forçado/fisiologia , Humanos , Masculino , Esforço Físico/fisiologia , Ventilação Pulmonar/fisiologia , Resultado do Tratamento , Adulto JovemRESUMO
NEW FINDINGS: What is the central question of this study? How does sternocleidomastoid blood flow change in response to increasing ventilation and whole-body exercise intensity? What is the main finding and its importance? Sternocleidomastoid blood flow increased with increasing ventilation. For a given ventilation, sternocleidomastoid blood flow was lower during whole-body exercise compared to resting hyperpnoea. These findings suggest that locomotor muscle work exerts an effect on respiratory muscle blood flow that can be observed in the sternocleidomastoid. ABSTRACT: Respiratory muscle work influences the distribution of blood flow during exercise. Most studies have focused on blood flow to the locomotor musculature rather than the respiratory muscles, owing to the complex anatomical arrangement of respiratory muscles. The purpose of this study was to examine how accessory respiratory (i.e. sternocleidomastoid, and muscles in the intercostal space) muscle blood flow changes in response to locomotor muscle work. Seven men performed 5 min bouts of constant load cycling exercise trials at 30%, 60% and 90% of peak work rate in a randomized order, followed by 5 min bouts of voluntary hyperpnoea (VH) matching the ventilation achieved during each exercise (EX) trial. Blood-flow index (BFI) of the vastus lateralis, sternocleidomastoid (SCM) and seventh intercostal space (IC) were estimated using near-infrared spectroscopy and indocyanine green and expressed relative to resting levels. BFISCM was greater during VH compared to EX (P = 0.002) and increased with increasing exercise intensity (P = 0.036). BFISCM reached 493 ± 219% and 301 ± 215% rest during VH and EX at 90% peak work rate, respectively. BFIIC increased to 242 ± 178% and 210 ± 117% rest at 30% peak work rate during VH and EX, respectively. No statistically significant differences in BFIIC were observed with increased work rate during VH or EX (both P > 0.05). Moreover, there was no observed difference in BFIIC between conditions (P > 0.05). BFISCM was lower for a given minute ventilation during EX compared to VH, suggesting that accessory respiratory muscle blood flow is influenced by whole-body exercise.
Assuntos
Exercício Físico/fisiologia , Hiperventilação/fisiopatologia , Músculo Quadríceps/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Músculos Respiratórios/irrigação sanguínea , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Hemodinâmica/fisiologia , Humanos , Hiperventilação/metabolismo , Verde de Indocianina/metabolismo , Masculino , Consumo de Oxigênio/fisiologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/fisiologia , Respiração , Músculos Respiratórios/metabolismo , Músculos Respiratórios/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodosRESUMO
KEY POINTS: The perceived intensity of exertional breathlessness (i.e. dyspnoea) is higher in older women than in older men, possibly as a result of sex-differences in respiratory system morphology. During exercise at a given absolute intensity or minute ventilation, older women have a greater degree of mechanical ventilatory constraint (i.e. work of breathing and expiratory flow limitation) than their male counterparts, which may lead to a greater perceived intensity of dyspnoea. Using a single-blind randomized study design, we experimentally manipulated the magnitude of mechanical ventilatory constraint during moderate-intensity exercise at ventilatory threshold in healthy older men and women. We found that changes in the magnitude of mechanical ventilatory constraint within the physiological range had no effect on dyspnoea in healthy older adults. When older men and women perform moderate intensity exercise, mechanical ventilatory constraint does not contribute significantly to the sensation of dyspnoea. ABSTRACT: We aimed to determine the effect of manipulating mechanical ventilatory constraint during submaximal exercise on dyspnoea in older men and women. Eighteen healthy subjects (aged 60-80 years; nine men and nine women) completed two days of testing. On day 1, subjects were assessed for pulmonary function and performed a maximal incremental cycle exercise test. On day 2, subjects performed three 6-min bouts of cycling at ventilatory threshold, in a single-blind randomized manner, while breathing: (i) normoxic helium-oxygen (HEL) to reduce the work of breathing (Wb ) and alleviate expiratory flow limitation (EFL); (ii) through an inspiratory resistance (RES) of â¼5 cmH2 O L-1 s-1 to increase Wb ; and (iii) ambient air as a control (CON). Oesophageal pressure, diaphragm electromyography, and sensory responses (category-ratio 10 Borg scale) were monitored throughout exercise. During the HEL condition, there was a significant decrease in Wb (men: -21 ± 6%, women: -17 ± 10%) relative to CON (both P < 0.01). Moreover, if EFL was present during CON (four men and five women), it was alleviated during HEL. Conversely, during the RES condition, Wb (men: 42 ± 19%, women: 50 ± 16%) significantly increased relative to CON (both P < 0.01). There was no main effect of sex on Wb (P = 0.59). Across conditions, women reported significantly higher dyspnoea intensity than men (2.9 ± 0.9 vs. 1.9 ± 0.8 Borg scale units, P < 0.05). Despite significant differences in the degree of mechanical ventilatory constraint between conditions, the intensity of dyspnoea was unaffected, independent of sex (P = 0.46). When older men and women perform moderate intensity exercise, mechanical ventilatory constraint does not contribute significantly to the sensation of dyspnoea.
Assuntos
Dispneia/fisiopatologia , Exercício Físico/fisiologia , Ventilação Pulmonar , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método Simples-CegoRESUMO
Many adults with single-ventricle congenital heart disease who have undergone a Fontan procedure have abnormal pulmonary function resembling restrictive lung disease. Whether this contributes to ventilatory limitations and increased dyspnea has not been comprehensively studied. We recruited 17 Fontan participants and 17 healthy age- and sex-matched sedentary controls. All participants underwent complete pulmonary function testing followed by a symptom-limited incremental cardiopulmonary cycle exercise test with detailed assessments of dyspnea and operating lung volumes. Fontan participants and controls were well matched for age, sex, body mass index, height, and self-reported physical activity levels (all P > 0.05), although Fontan participants had markedly reduced cardiorespiratory fitness and peak work rates ( P < 0.001). Fontan participants had lower values for most pulmonary function measurements relative to controls with 65% of Fontan participants showing evidence of a restrictive ventilatory defect. Relative to controls, Fontan participants had significantly higher breathing frequency, end-inspiratory lung volume (% total lung capacity), ventilatory inefficiency (high ventilatory equivalent for CO2), and dyspnea intensity ratings at standardized absolute submaximal work rates. There were no between-group differences in qualitative descriptors of dyspnea. The restrictive ventilatory defect in Fontan participants likely contributes to their increased breathing frequency and end-inspiratory lung volume during exercise. This abnormal ventilatory response coupled with greater ventilatory inefficiency may explain the increased dyspnea intensity ratings in those with a Fontan circulation. Interventions that enhance the ventilatory response to exercise in Fontan patients may help optimize exercise rehabilitation interventions, resulting in improved exercise tolerance and exertional symptoms. NEW & NOTEWORTHY This is the first study to comprehensively characterize both ventilatory and sensory responses to exercise in adults that have undergone the Fontan procedure. The majority of Fontan participants had a restrictive ventilatory defect. Compared with well-matched controls, Fontan participants had increased breathing frequency, end-inspiratory lung volume, and ventilatory inefficiency. These abnormal ventilatory responses likely form the mechanistic basis for the increased dyspnea intensity ratings observed in our Fontan participants during exercise.
Assuntos
Exercício Físico , Técnica de Fontan/efeitos adversos , Cardiopatias Congênitas/cirurgia , Complicações Pós-Operatórias/fisiopatologia , Ventilação Pulmonar , Respiração , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Troca Gasosa Pulmonar , Capacidade Pulmonar TotalRESUMO
Our understanding of the mechanisms of dyspnoea in fibrotic interstitial lung disease (ILD) is incomplete. The aims of this study were two-fold: 1) to determine whether dyspnoea intensity is better predicted by neural respiratory drive (NRD) or neuromechanical uncoupling (NMU) of the respiratory system in fibrotic ILD, and 2) to examine the effect of breathing 60% oxygen on NRD, NMU and dyspnoea ratings.Fourteen patients with fibrotic ILD were included. Visit 1 comprised a familiarisation incremental cycle exercise test, Visit 2 comprised a normoxic incremental cycling test to address Aim 1, and Visits 3 and 4 consisted of constant-load cycling while breathing room air or 60% oxygen to address Aim 2. Diaphragmatic electromyography (EMGdi) was used as a surrogate of NRD. NMU was calculated as the ratio between EMGdi (%max) and tidal volume (%vital capacity).On adjusted analysis, NMU and its constituents were all significantly associated with dyspnoea ratings during incremental cycling, with EMGdi having the strongest correlation. The between-treatment change in dyspnoea ratings during constant load cycling was only correlated with change in exercise endurance time and NMU.Dyspnoea more strongly reflected the level of EMGdi than NMU in fibrotic ILD. However, the improvement in dyspnoea with 60% oxygen was better predicted by improvements in NMU.
Assuntos
Dispneia/fisiopatologia , Doenças Pulmonares Intersticiais/fisiopatologia , Neurofisiologia/métodos , Idoso , Estudos Cross-Over , Eletromiografia , Teste de Esforço , Feminino , Fibrose , Humanos , Hiperóxia/patologia , Pneumopatias , Masculino , Pessoa de Meia-Idade , Oxigênio/química , Pletismografia , Respiração , Testes de Função Respiratória , Espirometria , Inquéritos e QuestionáriosRESUMO
NEW FINDINGS: What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the WOB increased locomotor blood flow. Oxygen uptake was not different during the control and resistor trials (3.8 ± 0.9 versus 3.7 ± 0.8 l min-1 , P > 0.05), but was lower on the proportional assist ventilator trial (3.4 ± 0.7 l min-1 , P < 0.05) compared with control. Our findings support the concept that respiratory muscle work significantly influences the distribution of blood flow to both respiratory and locomotor muscles.
Assuntos
Exercício Físico/fisiologia , Locomoção , Pulmão/fisiologia , Músculo Quadríceps/irrigação sanguínea , Músculos Respiratórios/irrigação sanguínea , Trabalho Respiratório , Adulto , Velocidade do Fluxo Sanguíneo , Feminino , Humanos , Masculino , Contração Muscular , Fluxo Sanguíneo Regional , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo , Adulto JovemRESUMO
Dyspnoea and activity limitation can occur in smokers who do not meet spirometric criteria for chronic obstructive pulmonary disease (COPD) but the underlying mechanisms are unknown.Detailed pulmonary function tests and sensory-mechanical relationships during incremental exercise with respiratory pressure measurements and diaphragmatic electromyography (EMGdi) were compared in 20 smokers without spirometric COPD and 20 age-matched healthy controls.Smokers (mean±sd post-bronchodilator forced expiratory volume in 1â s (FEV1)/forced vital capacity 75±4%, mean±sd FEV1 104±14% predicted) had greater activity-related dyspnoea, poorer health status and lower physical activity than controls. Smokers had peripheral airway dysfunction: higher phase-III nitrogen slopes (3.8±1.8 versus 2.6±1.1%·L(-1)) and airway resistance (difference between airway resistance measured at 5â Hz and 20â Hz 19±11 versus 12±7% at 5â Hz) than controls (p<0.05). Smokers had significantly (p<0.05) lower peak oxygen uptake (78±40 versus 107±45% predicted) and ventilation (61±26 versus 97±29â L·min(-1)). Exercise ventilatory requirements, operating lung volumes and cardio-circulatory responses were similar. However, submaximal dyspnoea ratings, resistive and total work of breathing were increased in smokers compared with controls (p<0.05); diaphragmatic effort (transdiaphragmatic pressure/maximumal transdiaphragmatic pressure) and fractional inspiratory neural drive to the diaphragm (EMGdi/maximal EMGdi) were also increased (p<0.05) mainly reflecting the reduced denominator.Symptomatic smokers at risk for COPD had greater exertional dyspnoea and lower exercise tolerance compared with healthy controls in association with greater airways resistance, contractile diaphragmatic effort and fractional inspiratory neural drive to the diaphragm.
Assuntos
Dispneia/fisiopatologia , Tolerância ao Exercício/fisiologia , Volume Expiratório Forçado , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Índice de Massa Corporal , Estudos Transversais , Diafragma/fisiopatologia , Eletromiografia , Teste de Esforço , Feminino , Humanos , Inalação , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Oxigênio/química , Fenótipo , Respiração , Testes de Função Respiratória , Risco , Fumar , Espirometria , Capacidade VitalRESUMO
Coronavirus disease 2019 (COVID-19) is associated with enlarged luminal areas of large conducting airways. In 10-30% of patients with acute COVID-19 infection, symptoms persist for more than 4 wk (referred to as post-acute sequelae of COVID 19, or PASC), and it is unknown if airway changes are associated with this persistence. Thus, we aim to investigate whether luminal area of large conducting airways is different between patients with PASC and COVID-19 and healthy controls. In this retrospective case-control study, 75 patients with PASC (48 females) were age-, height-, and sex-matched to 75 patients with COVID-19 and 75 healthy controls. Using three-dimensional digital reconstruction from computed tomography imaging, we measured luminal areas of seven conducting airways, including trachea, right and left main bronchi, bronchus intermediate, right and left upper lobe, and left lower lobe bronchi. Kruskal-Wallis H test was used to compare measurements between the three groups, as appropriate. Airway luminal areas between COVID-19 and PASC groups were not different (all, P > 0.66). There were no group differences in airway luminal area (PASC vs. control) for trachea and right main bronchus. However, in the remaining five airways, airway luminal areas were 12-39% larger among patients with PASC than in controls (all, P < 0.05). Patients diagnosed with COVID-19 and PASC have greater airway luminal area in most large conducting airways compared with healthy controls. No differences in luminal area between patients with COVID-19 and PASC suggest persistence of changes or insufficient time for reversal of changes.NEW & NOTEWORTHY Three-dimensional reconstruction of airways has shown increased luminal area in patients with COVID-19 and post-acute sequelae of COVID-19 when compared with healthy controls. These findings suggest the role of large conducting airways in the pathogenesis of post-acute sequelae of COVID 19.
Assuntos
Brônquios , COVID-19 , Tomografia Computadorizada por Raios X , Humanos , COVID-19/fisiopatologia , COVID-19/complicações , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Estudos de Casos e Controles , Brônquios/diagnóstico por imagem , Brônquios/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Idoso , Traqueia/diagnóstico por imagem , Traqueia/fisiopatologia , SARS-CoV-2 , Adulto , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Síndrome de COVID-19 Pós-AgudaRESUMO
INTRODUCTION: Contrary to common belief, a growing body of evidence suggests that unsatisfied inspiration (UI), an inherently uncomfortable quality of dyspnea, is experienced by ostensibly healthy adults during high-intensity exercise. Based on our understanding of the mechanisms of UI among people with chronic respiratory conditions, this analysis tested the hypothesis that the experience of UI at peak exercise in young, healthy adults reflects the combination of high ventilatory demand and critical inspiratory constraints. METHODS: In a retrospective analysis design, data included 321 healthy individuals (129 females) aged 25 ± 5 yr. Data were collected during one visit to the laboratory, which included anthropometrics, spirometry, and an incremental cardiopulmonary cycling test to exhaustion. Metabolic and cardiorespiratory variables were measured at peak exercise, and qualitative descriptors of dyspnea at peak exercise were assessed using a list of 15 descriptor phrases. RESULTS: Thirty-four percent of participants ( n = 109) reported sensations of UI at peak exercise. Compared with the non-UI group, the UI group achieved a significantly higher peak work rate (243 ± 77 vs 235 ± 69 W, P = 0.016, d = 0.10), rate of O 2 consumption (3.32 ± 1.02 vs 3.27 ± 0.96 L·min -1 , P = 0.018, d = 0.05), minute ventilation (120 ± 38 vs 116 ± 35 L·min -1 , P = 0.047, d = 0.11), and breathing frequency (50 ± 9 vs 47 ± 9 breaths per minute, P = 0.014, d = 0.33), while having a lower exercise-induced change (peak-baseline) in inspiratory capacity (0.07 ± 0.41 vs 0.20 ± 0.49 L, P = 0.023, d = 0.29). The inspiratory reserve volume to minute ventilation ratio at peak exercise was also lower in the UI versus non-UI group. Dyspnea intensity and unpleasantness ratings were significantly higher in the UI versus non-UI group at peak exercise (both P < 0.001). CONCLUSIONS: Healthy individuals reporting UI at peak exercise have relatively greater inspiratory constraints compared with those who do not select UI.
Assuntos
Dispneia , Exercício Físico , Inalação , Consumo de Oxigênio , Humanos , Feminino , Adulto , Masculino , Inalação/fisiologia , Dispneia/fisiopatologia , Exercício Físico/fisiologia , Estudos Retrospectivos , Consumo de Oxigênio/fisiologia , Adulto Jovem , Teste de EsforçoRESUMO
INTRODUCTION: During the coronavirus disease 2019 pandemic, public health officials widely adopted the use of face masks (FM) to minimize infections. Despite consistent evidence that FMs increase dyspnea, no studies have examined the multidimensional components of dyspnea or their underlying physiological mechanisms. METHODS: In a randomized crossover design, 16 healthy individuals ( n = 9 women, 25 ± 3 yr) completed incremental cycling tests over three visits, where visits 2 and 3 were randomized to either surgical FM or no mask control. Dyspnea intensity and unpleasantness were assessed throughout exercise (0-10 Borg scale), and the Multidimensional Dyspnea Profile was administered immediately after exercise. Crural diaphragmatic EMG and esophageal pressure were measured using a catheter to estimate neural respiratory drive and respiratory muscle effort, respectively. RESULTS: Dyspnea unpleasantness was significantly greater with the FM at the highest equivalent submaximal work rate achieved by a given participant in both conditions (iso-work; 5.9 ± 1.7 vs 3.9 ± 2.9 Borg 0-10 units, P = 0.007) and at peak exercise (7.8 ± 2.1 vs 5.9 ± 3.4 Borg 0-10 units, P = 0.01) with no differences in dyspnea intensity ratings throughout exercise compared with control. There were significant increases in the sensory quality of "smothering/air hunger" ( P = 0.01) and the emotional response of "anxiousness" ( P = 0.04) in the FM condition. There were significant increases in diaphragmatic EMG and esophageal pressure at select submaximal work rates, but no differences in heart rate, pulse oximetry-derived arterial oxygen saturation, or breathing frequency throughout exercise with FMs compared with control. FMs significantly reduced peak work rate and exercise duration (both P = 0.02). CONCLUSIONS: FMs negatively impact the affective domain of dyspnea and increase neural respiratory drive and respiratory muscle effort during exercise, although the impact on other cardiorespiratory responses are minimal.
Assuntos
COVID-19 , Máscaras , Humanos , Feminino , COVID-19/prevenção & controle , Dispneia , Respiração , Exercício Físico/fisiologia , Teste de EsforçoRESUMO
After a bout of isolated inspiratory work, such as inspiratory pressure threshold loading (IPTL), the human diaphragm can exhibit a reversible loss in contractile function, as evidenced by a decrease in transdiaphragmatic twitch pressure (PDI,TW ). Whether or not diaphragm fatigability after IPTL is affected by neural mechanisms, measured through voluntary activation of the diaphragm (D-VA) in addition to contractile mechanisms, is unknown. It is also unknown if changes in D-VA are similar between sexes given observed differences in diaphragm fatigability between males and females. We sought to determine whether D-VA decreases after IPTL and whether this was different between sexes. Healthy females (n = 11) and males (n = 10) completed an IPTL task with an inspired duty cycle of 0.7 and targeting an intensity of 60% maximal transdiaphragmatic pressure until task failure. PDI,TW and D-VA were measured using cervical magnetic stimulation of the phrenic nerves in combination with maximal inspiratory pressure maneuvers. At task failure, PDI,TW decreased to a lesser degree in females vs. males (87 ± 15 vs. 73 ± 12% baseline, respectively, p = 0.016). D-VA decreased after IPTL but was not different between females and males (91 ± 8 vs. 88 ± 10% baseline, respectively, p = 0.432). When all participants were pooled together, the decrease in PDI,TW correlated with both the total cumulative diaphragm pressure generation (R2 = 0.43; p = 0.021) and the time to task failure (TTF, R2 = 0.40; p = 0.30) whereas the decrease in D-VA correlated only with TTF (R2 = 0.24; p = 0.041). Our results suggest that neural mechanisms can contribute to diaphragm fatigability, and this contribution is similar between females and males following IPTL.
Assuntos
Diafragma , Tórax , Masculino , Feminino , Humanos , Diafragma/fisiologia , Contração Muscular/fisiologia , Nervo Frênico/fisiologiaAssuntos
Dispneia/terapia , Tolerância ao Exercício , Hiperóxia/terapia , Doenças Pulmonares Intersticiais/terapia , Oxigenoterapia , Idoso , Colúmbia Britânica , Estudos Cross-Over , Dispneia/etiologia , Feminino , Humanos , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Método Simples-CegoRESUMO
OBJECTIVES: Examine the effects of the Elevation Training Mask® 2.0 (ETM) on dyspnea, and respiratory muscle function and fatigue during exercise. DESIGN: Randomized crossover. METHODS: 10 healthy participants completed 2 time-to-exhaustion (TTE) cycling tests while wearing the ETM or under a sham control condition. During the sham, participants were told they were breathing air equivalent to "9000â¯ft" (matched to the selected resistance valves on the ETM according to the manufacturer), but they were breathing room air. Dyspnea and leg discomfort were assessed using the modified 0-10 category-ratio Borg scale. Qualitative dyspnea descriptors at peak exercise were selected from a list of 15. Crural diaphragmatic electromyography (EMGdi) and transdiaphragmatic pressure (Pdi) were measured via a multipair esophageal electrode balloon catheter. Participants performed maximal respiratory maneuvers before and after exercise to estimate the degree of respiratory muscle fatigue. RESULTS: Exercise with the ETM resulted in a significant decrease in TTE (pâ¯=â¯0.015), as well as increased dyspnea at baseline (pâ¯=â¯0.032) and during the highest equivalent submaximal exercise time (pâ¯=â¯0.0001). The increase in dyspnea with the ETM was significantly correlated with the decrease in exercise time (râ¯=â¯0.73, pâ¯=â¯0.020). EMGdi and Pdi were significantly increased with the ETM at all time points (all pâ¯<â¯0.05). There was a significant increase in the selection frequency of "my breath does not go in all the way" at peak exercise with the ETM (pâ¯=â¯0.02). The ETM did not induce respiratory muscle fatigue. CONCLUSIONS: Exercising with the ETM appears to decrease exercise performance, in part, by increasing the sensation of dyspnea.
Assuntos
Dispneia , Músculos Respiratórios , Diafragma , Eletromiografia , Humanos , Fadiga Muscular , Mecânica RespiratóriaRESUMO
BACKGROUND: Individuals with COPD have increased sensitivity to traffic-related air pollution (TRAP) such as diesel exhaust (DE), but little is known about the acute effects of TRAP on exercise responses in COPD. RESEARCH QUESTION: Does exposure before exercise to TRAP (DE titrated to 300 µg/m3 particulate matter < 2.5 µm in diameter [DE300]) show greater adverse effects on exercise endurance, exertional dyspnea, and cardiorespiratory responses to exercise in participants with mild to moderate COPD compared with former smokers with normal spirometry and healthy control participants? STUDY DESIGN AND METHODS: In this double-blind, randomized, placebo-controlled, crossover study, 11 healthy control participants, nine former smokers without COPD, and nine former smokers with COPD were separately exposed to filtered air (FA) and DE300 for 2 h separated by a minimum of 4 weeks. Participants performed symptom-limited constant load cycling tests within 2.5 h of exposure with detailed cardiorespiratory and exertional symptom measurements. RESULTS: A significant negative effect of TRAP on exercise endurance time was found in healthy control participants (DE300 vs FA, 10.2 ± 8.2 min vs 12.9 ± 9.5 min, respectively; P = .03), but not in former smokers without COPD (10.1 ± 6.9 min vs 12.2 ± 8.0 min, respectively; P = .57) or former smokers with COPD (9.8 ± 6.4 min vs 8.4 ± 6.6 min, respectively; P = .31). Furthermore, significant increases in inspiratory duty cycle and absolute end-expiratory and end-inspiratory lung volumes were observed, and dyspnea ratings were elevated at select submaximal measurement times only in healthy control participants. INTERPRETATION: Contrary to our hypothesis, it was the healthy control participants, rather than the former smokers with and without COPD, who were negatively impacted by TRAP during exercise. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT02236039; URL: www. CLINICALTRIALS: gov.
Assuntos
Poluição do Ar , Doença Pulmonar Obstrutiva Crônica , Poluição do Ar/efeitos adversos , Estudos Cross-Over , Dispneia/etiologia , Teste de Esforço , Tolerância ao Exercício , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnósticoRESUMO
INTRODUCTION: The female diaphragm develops less fatigue after high-intensity exercise compared with males. Diaphragm fatigability is typically defined as a decrease in transdiaphragmatic twitch pressure (Pdi,TW) and represents the contractile function of the muscle. However, it is unclear whether this sex difference persists when examining changes in voluntary activation, which represents a neural mechanism contributing to fatigability. PURPOSE: This study aimed to determine if high-intensity cycling results in a decrease in diaphragm voluntary activation (D-VA) and to explore if the decrease in D-VA is different between sexes. METHODS: Twenty-five participants (15 females) completed a single bout of high-intensity constant load cycling. D-VA and Pdi,TW were measured before and after exercise using cervical magnetic stimulation of the phrenic nerves to assess diaphragm fatigability. RESULTS: Participants were of similar aerobic fitness when expressed relative to predicted values (females: 114% ± 25% predicted, males: 111% ± 11% predicted; P = 0.769). Pdi,TW decreased relative to baseline to 85.2% ± 16.7% and 70.3% ± 12.4% baseline (P = 0.012) in females and males, respectively, immediately after exercise. D-VA also decreased in both females and males immediately after exercise. The decrease in D-VA was less in females compared with males (95.4% ± 4.9% baseline vs 87.4% ± 10.8% baseline, respectively; P = 0.018). CONCLUSIONS: D-VA decreases after whole-body exercise in both females and males, although the magnitude of the decrease is not as large in females compared with males. The findings of this study suggest that the female diaphragm is more resistant to both contractile and neural mechanisms of fatigability after whole-body exercise.
Assuntos
Diafragma , Fadiga Muscular , Diafragma/fisiologia , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Fadiga Muscular/fisiologia , Nervo Frênico/fisiologia , Caracteres SexuaisRESUMO
OBJECTIVE: Individuals with exercise-induced bronchoconstriction (EIB) use ß2-agonists to reduce respiratory symptoms during acute exercise. The resultingbronchodilation could increase the dose of inhaled pollutants and impair respiratory function when exercise is performedin air pollution. We aimed to assess respiratory responses in individuals with EIB when completing a cycling bout while being exposed to diesel exhaust (DE) or filtered air (FA) with and without the inhalation of salbutamol (SAL), a short-acting ß2-agonist. METHODS: In a double-blind, repeated-measures design, 19 participants with EIB (22-33 years of age) completed four visits: FA-placebo (FA-PLA), FA-SAL, DE-PLA, DE-SAL. After the inhalation of either 400 µg of SAL or PLA, participants sat in the exposure chamber for 60 min, breathing either FA or DE (PM2.5 = 300 µg/m3). Participants then cycled for 30 min at 50 % of peak work rate while breathing FA or DE. Respiratory responses were assessed via spirometry, work of breathing (WOB), fractional use of ventilatory capacity (VÌE/VÌE,CAP), area under the maximal expiratory flow-volume curve (MEFVAUC), and dyspnea during and following cycling. RESULTS: Bronchodilation in response to SAL and acute cycling was observed, independent of FA/DE exposure. Specifically, FEV1 was increased by 7.7 % (confidence interval (CI): 7.2-8.2 %; p < 0.01) in response to SAL, and MEFVAUC was increased after cycling by 1.1 % (0.9-1.3 %; p = 0.03). Despite a significant decrease in total WOB by 6.2 J/min (4.7-7.5 J/min; p = 0.049) and a reduction in VÌE/VÌE,CAP by 5.8 % (5-6 %, p < 0.01) in the SAL exposures, no changes were observed in dyspnea. The DE exposure significantly increased VÌE/VÌE,CAP by 2.4 % (0.9-3.9 %; p < 0.01), but this did not affect dyspnea. DISCUSSION: Our findings suggest that the use of SAL prior to moderate-intensity exercise when breathing high levels of DE, does not reduce respiratory function or exercise ventilatory responses for up to 60 min following exercise.
Assuntos
Poluição do Ar , Emissões de Veículos , Poluição do Ar/efeitos adversos , Broncoconstrição , Estudos Cross-Over , Exercício Físico , Humanos , Laboratórios , Pirina , Emissões de Veículos/toxicidadeRESUMO
This case report characterizes the physiological responses to incremental cycling and determines the effects of 12 wk of inspiratory muscle training (IMT) on respiratory muscle strength, exercise capacity, and dyspnea in a physically active 59-yr-old female, 4 years after a left-sided extrapleural pneumonectomy (EPP). On separate days, a symptom-limited incremental exercise test and a constant work rate (CWR) test at 75% of peak work rate (WR) were completed, followed by 12 wk of IMT and another CWR test. IMT consisted of two sessions of 30 repetitions twice daily for 5 days per week. Physiological and perceptual variables were measured throughout each exercise test. The participant had a total lung capacity that was 43% predicted post-EPP. A rapid and shallow breathing pattern was adopted throughout exercise, and the ratio of minute ventilation to carbon dioxide output was elevated for a given work rate. Oxygen uptake was 71% predicted and WR was 88% predicted. Following IMT, maximal inspiratory pressure improved by 36% (-27.1 cmH2O) and endurance time by 31 s, with no observable changes in any submaximal or peak cardiorespiratory variables during exercise. The intensity and unpleasantness of dyspnea increased by 2 and 3 Borg 0-10 units, respectively, at the highest equivalent submaximal exercise time achieved on both tests. Despite having undergone a significant reduction in lung volume post-EPP, the participant achieved a relatively normal peak incremental WR, which may reflect a high level of physical conditioning. This case report also demonstrates that IMT can effectively increase respiratory muscle strength several years following EPP.NEW & NOTEWORTHY Constraints on tidal volume expansion and the adoption of a rapid and shallow breathing pattern result in a ventilatory limitation and increased ventilatory inefficiency during exercise in a patient several years after extrapleural pneumonectomy (EPP). Inspiratory muscle training can effectively increase respiratory muscle strength after EPP.