Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 62(4): 1003-1034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33086895

RESUMO

Tomato, a widely consumed vegetable crop, offers a real potential to combat human nutritional deficiencies. Tomatoes are rich in micronutrients and other bioactive compounds (including vitamins, carotenoids, and minerals) that are known to be essential or beneficial for human health. This review highlights the current state of the art in the molecular understanding of the nutritional aspects, conventional and molecular breeding efforts, and biofortification studies undertaken to improve the nutritional content and quality of tomato. Transcriptomics and metabolomics studies, which offer a deeper understanding of the molecular regulation of the tomato's nutrients, are discussed. The potential uses of the wastes from the tomato processing industry (i.e., the peels and seed extracts) that are particularly rich in oils and proteins are also discussed. Recent advancements with CRISPR/Cas mediated gene-editing technology provide enormous opportunities to enhance the nutritional content of agricultural produces, including tomatoes. In this regard, genome editing efforts with respect to biofortification in the tomato plant are also discussed. The recent technological advancements and knowledge gaps described herein aim to help explore the unexplored nutritional potential of the tomato.


Assuntos
Desnutrição , Solanum lycopersicum , Antioxidantes , Carotenoides , Edição de Genes , Humanos , Solanum lycopersicum/genética
2.
Mol Biol Rep ; 49(2): 1329-1339, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34855106

RESUMO

BACKGROUND: The Sugar Will Eventually Be Exported Transporters (SWEET), consisting of the MtN3 and salvia domain, are sugar transporters having an active role in diverse activities in plants such as pollen nutrition, phloem loading, nectar secretion, reproductive tissue development, and plant-pathogen interaction. The SWEET genes have been characterized only in a few fruit crop species. METHODS AND RESULTS: In this study, a total of 15 SWEET genes were identified in the pomegranate (Punica granatum) genome. The gene structure, transmembrane (TM) helices, domain architecture, and phylogenetic relationships of these genes were evaluated using computational approaches. Genes were further classified as Semi-SWEETs or SWEETs based on the TM domains. Similarly, pomegranate, Arabidopsis, rice, and soybean SWEETs were studied together to classify into major groups. In addition, analysis of RNAseq transcriptome data was performed to study SWEEET gene expression dynamics in different tissue. The expression suggests that SWEETs are mostly expressed in pomegranate peel. In addition, PgSWEET13 was found to be differentially expressed under high salinity stress in pomegranate. Further, quantitative PCR analysis confirmed the expression of four candidate genes in leaf and stem tissues. CONCLUSION: The information provided here will help to understand the role of SWEET genes in fruit development and under abiotic stress conditions in pomegranate.


Assuntos
Punica granatum/genética , Estresse Fisiológico/genética , Arabidopsis/genética , Transporte Biológico , Frutas/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Lythraceae/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oryza/genética , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Plantas/genética , Punica granatum/crescimento & desenvolvimento , Glycine max/genética , Transcriptoma/genética
3.
Physiol Plant ; 171(4): 756-770, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33231322

RESUMO

Transporters, a class of membrane proteins that facilitate exchange of solutes including diverse molecules and ions across the cellular membrane, are vital component for the survival of all organisms. Understanding plant transporters is important to get insight of the basic cellular processes, physiology, and molecular mechanisms including nutrient uptake, signaling, response to external stress, and many more. In this regard, extensive analysis of transporters predicted in soybean and other plant species was performed. In addition, an integrated database for soybean transporter protein, SoyTD, was developed that will facilitate the identification, classification, and extensive characterization of transporter proteins by integrating expression, gene ontology, conserved domain and motifs, gene structure organization, and chromosomal distribution features. A comprehensive analysis was performed to identify highly confident transporters by integrating various prediction tools. Initially, 7541 transmembrane (TM) proteins were predicted in the soybean genome; out of these, 3306 non-redundant transporter genes carrying two or more transmembrane domains were selected for further analysis. The identified transporter genes were classified according to a standard transporter classification (TC) system. Comparative analysis of transporter genes among 47 plant genomes provided insights into expansion and duplication of transporter genes in land plants. The whole genome resequencing (WGRS) and tissue-specific transcriptome datasets of soybean were integrated to investigate the natural variants and expression profile associated with transporter(s) of interest. Overall, SoyTD provides a comprehensive interface to study genetic and molecular function of soybean transporters. SoyTD is publicly available at http://artemis.cyverse.org/soykb_dev/SoyTD/.


Assuntos
Glycine max , Proteínas de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Transcriptoma
4.
Crit Rev Food Sci Nutr ; 60(19): 3304-3320, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31718237

RESUMO

Rice nutritional quality is one of the major concerns along with productivity enhancement to feed the continuously growing population. To address wide-spread malnutrition influencing global health, novel high yielding rice cultivars with better nutritional quality need to be bred. No doubt, the conventional breeding approaches have helped to decrease the gap between demand and supply for yield and nutrition; however, to meet today's demands more advanced approaches need to be employed. This review discusses approaches for the improvement of nutritional quality of rice and gauges the availability of omics resources. Recent omics advances providing numerous tools and techniques for the efficient exploration of genetic resources as well as for the understanding of molecular mechanism involved in the trait development have been discussed. Understanding of genes or loci governing different traits has been found to be effective in accelerating the crop breeding programs. In this regard, approaches like QTL (quantitative trait loci) mapping, genome-wide association study and genomic selection are discussed in light of their utilization for rice nutritional quality improvements. Efficient integration of different omics approaches is recognized as a promising way to achieve the desired improvements in rice cultivars. Therefore, advances in omics branches like transcriptomics, proteomics, ionomics, and metabolomics being efficiently explored for rice improvement programs are also addressed. This article provides a catalog of genes, loci, mutants, online resources and computational approaches for rice improvement. The information provided here will be helpful for pursuing present progress and directing rice research program for better future.


Assuntos
Oryza , Cruzamento , Estudo de Associação Genômica Ampla , Valor Nutritivo , Oryza/genética , Locos de Características Quantitativas
5.
Cells ; 11(7)2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35406707

RESUMO

Nutritional quality improvement of rice is the key to ensure global food security. Consequently, enormous efforts have been made to develop genomics and transcriptomics resources for rice. The available omics resources along with the molecular understanding of trait development can be utilized for efficient exploration of genetic resources for breeding programs. In the present study, 80 genes known to regulate the nutritional and cooking quality of rice were extensively studied to understand the haplotypic variability and gene expression dynamics. The haplotypic variability of selected genes were defined using whole-genome re-sequencing data of ~4700 diverse genotypes. The analytical workflow identified 133 deleterious single-nucleotide polymorphisms, which are predicted to affect the gene function. Furthermore, 788 haplotype groups were defined for 80 genes, and the distribution and evolution of these haplotype groups in rice were described. The nucleotide diversity for the selected genes was significantly reduced in cultivated rice as compared with that in wild rice. The utility of the approach was successfully demonstrated by revealing the haplotypic association of chalk5 gene with the varying degree of grain chalkiness. The gene expression atlas was developed for these genes by analyzing RNA-Seq transcriptome profiling data from 102 independent sequence libraries. Subsequently, weighted gene co-expression meta-analyses of 11,726 publicly available RNAseq libraries identified 19 genes as the hub of interactions. The comprehensive analyses of genetic polymorphisms, allelic distribution, and gene expression profiling of key quality traits will help in exploring the most desired haplotype for grain quality improvement. Similarly, the information provided here will be helpful to understand the molecular mechanism involved in the development of nutritional and cooking quality traits in rice.


Assuntos
Oryza , Culinária , Grão Comestível , Expressão Gênica , Haplótipos/genética , Oryza/genética , Oryza/metabolismo , Locos de Características Quantitativas , Polimorfismo de Nucleotídeo Único
6.
Cells ; 12(1)2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36611890

RESUMO

Soybean with enriched nutrients has emerged as a prominent source of edible oil and protein. In the present study, a meta-analysis was performed by integrating quantitative trait loci (QTLs) information, region-specific association and transcriptomic analysis. Analysis of about a thousand QTLs previously identified in soybean helped to pinpoint 14 meta-QTLs for oil and 16 meta-QTLs for protein content. Similarly, region-specific association analysis using whole genome re-sequenced data was performed for the most promising meta-QTL on chromosomes 6 and 20. Only 94 out of 468 genes related to fatty acid and protein metabolic pathways identified within the meta-QTL region were found to be expressed in seeds. Allele mining and haplotyping of these selected genes were performed using whole genome resequencing data. Interestingly, a significant haplotypic association of some genes with oil and protein content was observed, for instance, in the case of FAD2-1B gene, an average seed oil content of 20.22% for haplotype 1 compared to 15.52% for haplotype 5 was observed. In addition, the mutation S86F in the FAD2-1B gene produces a destabilizing effect of (ΔΔG Stability) -0.31 kcal/mol. Transcriptomic analysis revealed the tissue-specific expression of candidate genes. Based on their higher expression in seed developmental stages, genes such as sugar transporter, fatty acid desaturase (FAD), lipid transporter, major facilitator protein and amino acid transporter can be targeted for functional validation. The approach and information generated in the present study will be helpful in the map-based cloning of regulatory genes, as well as for marker-assisted breeding in soybean.


Assuntos
Glycine max , Locos de Características Quantitativas , Glycine max/química , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Transcriptoma/genética , Melhoramento Vegetal , Sementes/metabolismo , Óleos de Plantas/metabolismo , Genômica
7.
Cells ; 11(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36429050

RESUMO

Silicon (Si) is gaining widespread attention due to its prophylactic activity to protect plants under stress conditions. Despite Si's abundance in the earth's crust, most soils do not have enough soluble Si for plants to absorb. In the present study, a silicate-solubilizing bacterium, Enterobacter sp. LR6, was isolated from the rhizospheric soil of rice and subsequently characterized through whole-genome sequencing. The size of the LR6 genome is 5.2 Mb with a GC content of 54.9% and 5182 protein-coding genes. In taxogenomic terms, it is similar to E. hormaechei subsp. xiangfangensis based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH). LR6 genomic data provided insight into potential genes involved in stress response, secondary metabolite production, and growth promotion. The LR6 genome contains two aquaporins, of which the aquaglyceroporin (GlpF) is responsible for the uptake of metalloids including arsenic (As) and antimony (Sb). The yeast survivability assay confirmed the metalloid transport activity of GlpF. As a biofertilizer, LR6 isolate has a great deal of tolerance to high temperatures (45 °C), salinity (7%), and acidic environments (pH 9). Most importantly, the present study provides an understanding of plant-growth-promoting activity of the silicate-solubilizing bacterium, its adaptation to various stresses, and its uptake of different metalloids including As, Ge, and Si.


Assuntos
Enterobacter , Genômica , Enterobacter/genética , Silicatos , Silício , Plantas/genética , DNA
8.
Front Microbiol ; 13: 962619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060785

RESUMO

Pesticides are either natural or chemically synthesized compounds that are used to control a variety of pests. These chemical compounds are used in a variety of sectors like food, forestry, agriculture and aquaculture. Pesticides shows their toxicity into the living systems. The World Health Organization (WHO) categorizes them based on their detrimental effects, emphasizing the relevance of public health. The usage can be minimized to a least level by using them sparingly with a complete grasp of their categorization, which is beneficial to both human health and the environment. In this review, we have discussed pesticides with respect to their global scenarios, such as worldwide distribution and environmental impacts. Major literature focused on potential uses of pesticides, classification according to their properties and toxicity and their adverse effect on natural system (soil and aquatic), water, plants (growth, metabolism, genotypic and phenotypic changes and impact on plants defense system), human health (genetic alteration, cancer, allergies, and asthma), and preserve food products. We have also described eco-friendly management strategies for pesticides as a green solution, including bacterial degradation, myco-remediation, phytoremediation, and microalgae-based bioremediation. The microbes, using catabolic enzymes for degradation of pesticides and clean-up from the environment. This review shows the importance of finding potent microbes, novel genes, and biotechnological applications for pesticide waste management to create a sustainable environment.

9.
Plant Physiol Biochem ; 165: 173-186, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044226

RESUMO

Silicon (Si) is an omnipresent and second most abundant element in the soil lithosphere after oxygen. Silicon being a beneficial element imparts several benefits to the plants and animals. In many plant species, including the cereals the uptake of Si from the soil even exceeds the uptake of essential nutrients. Cereals are the monocots which are known to accumulate a high amount of Si, and reaping maximum benefits associated with it. Cereals contribute a high amount of Si to the human diet compared to other food crops. In the present review, we have summarized distribution of the dietary Si in cereals and its role in the animal and human health. The Si derived benefits in cereals, specifically with respect to biotic and abiotic stress tolerance has been described. We have also discussed the molecular mechanism involved in the Si uptake in cereals, evolution of the Si transport mechanism and genetic variation in the Si concentration among different cultivars of the same species. Various genetic mutants deficient in the Si uptake have been developed and many QTLs governing the Si accumulation have been identified in cereals. The existing knowledge about the Si biology and available resources needs to be explored to understand and improve the Si accumulation in crop plants to achieve sustainability in agriculture.


Assuntos
Grão Comestível , Silício , Animais , Transporte Biológico , Solo , Estresse Fisiológico
10.
Genes (Basel) ; 11(12)2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256228

RESUMO

Metacaspases (MCs), a class of cysteine-dependent proteases found in plants, fungi, and protozoa, are predominately involved in programmed cell death processes. In this study, we identified metacaspase genes in cultivated and wild rice species. Characterization of metacaspase genes identified both in cultivated subspecies of Oryza sativa, japonica, and indica and in nine wild rice species was performed. Extensive computational analysis was conducted to understand gene structures, phylogenetic relationships, cis-regulatory elements, expression patterns, and haplotypic variations. Further, the haplotyping study of metacaspase genes was conducted using the whole-genome resequencing data publicly available for 4726 diverse genotype and in-house resequencing data generated for north-east Indian rice lines. Sequence variations observed among wild and cultivated rice species for metacaspase genes were used to understand the duplication and neofunctionalization events. The expression profiles of metacaspase genes were analyzed using RNA-seq transcriptome profiling in rice during different developmental stages and stress conditions. Real-time quantitative PCR analysis of candidate metacaspase genes in rice cultivars Pusa Basmati-1 in response to Magnaporthe oryzae infection indicated a significant role in the disease resistance mechanism. The information provided here will help to understand the evolution of metacaspases and their role under stress conditions in rice.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Oryza/genética , Regulação da Expressão Gênica de Plantas/genética , Transcriptoma/genética
11.
Plants (Basel) ; 8(6)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185678

RESUMO

: Fast neutron (FN) radiation mediated mutagenesis is a unique approach among the several induced mutagenesis methods being used in plant science in terms of impacted mutations. The FN mutagenesis usually creates deletions from few bases to several million bases (Mb). A library of random deletion generated using FN mutagenesis lines can provide indispensable resources for the reverse genetic approaches. In this review, information from several efforts made using FN mutagenesis has been compiled to understand the type of induced mutations, frequency, and genetic stability. Concerns regarding the utilization of FN mutagenesis technique for a plant with different level of ploidy and genome complexity are discussed. We have highlighted the utility of next-generation sequencing techniques that can be efficiently utilized for the characterization of mutant lines as well as for the mapping of causal mutations. Pros and cons of mapping by mutation (MutMap), mutant chromosome sequencing (MutChromSeq), exon capture, whole genome sequencing, MutRen-Seq, and different tilling approaches that can be used for the detection of FN-induced mutation has also been discussed. Genomic resources developed using the FN mutagenesis have been catalogued wooing to meaningful utilization of the available resources. The information provided here will be helpful for the efficient exploration for the crop improvement programs and for better understanding of genetic regulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA