Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 9: 176, 2008 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-18416834

RESUMO

BACKGROUND: Since its discovery more than 100 years ago, potato (Solanum tuberosum) tuber cold-induced sweetening (CIS) has been extensively investigated. Several carbohydrate-associated genes would seem to be involved in the process. However, many uncertainties still exist, as the relative contribution of each gene to the process is often unclear, possibly as the consequence of the heterogeneity of experimental systems. Some enzymes associated with CIS, such as beta-amylases and invertases, have still to be identified at a sequence level. In addition, little is known about the early events that trigger CIS and on the involvement/association with CIS of genes different from carbohydrate-associated genes. Many of these uncertainties could be resolved by profiling experiments, but no GeneChip is available for the potato, and the production of the potato cDNA spotted array (TIGR) has recently been discontinued. In order to obtain an overall picture of early transcriptional events associated with CIS, we investigated whether the commercially-available tomato Affymetrix GeneChip could be used to identify which potato cold-responsive gene family members should be further studied in detail by Real-Time (RT)-PCR (qPCR). RESULTS: A tomato-potato Global Match File was generated for the interpretation of various aspects of the heterologous dataset, including the retrieval of best matching potato counterparts and annotation, and the establishment of a core set of highly homologous genes. Several cold-responsive genes were identified, and their expression pattern was studied in detail by qPCR over 26 days. We detected biphasic behaviour of mRNA accumulation for carbohydrate-associated genes and our combined GeneChip-qPCR data identified, at a sequence level, enzymatic activities such as beta-amylases and invertases previously reported as being involved in CIS. The GeneChip data also unveiled important processes accompanying CIS, such as the induction of redox- and ethylene-associated genes. CONCLUSION: Our Global Match File strategy proved critical for accurately interpretating heterologous datasets, and suggests that similar approaches may be fruitful for other species. Transcript profiling of early events associated with CIS revealed a complex network of events involving sugars, redox and hormone signalling which may be either linked serially or act in parallel. The identification, at a sequence level, of various enzymes long known as having a role in CIS provides molecular tools for further understanding the phenomenon.


Assuntos
Adaptação Fisiológica/genética , Temperatura Baixa , Expressão Gênica , Genes de Plantas/genética , Solanum tuberosum/genética , Carboidratos/genética , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Solanum tuberosum/metabolismo
2.
Genetics ; 163(1): 335-46, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12586720

RESUMO

Four crosses were made between inbred Cannabis sativa plants with pure cannabidiol (CBD) and pure Delta-9-tetrahydrocannabinol (THC) chemotypes. All the plants belonging to the F(1)'s were analyzed by gas chromatography for cannabinoid composition and constantly found to have a mixed CBD-THC chemotype. Ten individual F(1) plants were self-fertilized, and 10 inbred F(2) offspring were collected and analyzed. In all cases, a segregation of the three chemotypes (pure CBD, mixed CBD-THC, and pure THC) fitting a 1:2:1 proportion was observed. The CBD/THC ratio was found to be significantly progeny specific and transmitted from each F(1) to the F(2)'s derived from it. A model involving one locus, B, with two alleles, B(D) and B(T), is proposed, with the two alleles being codominant. The mixed chemotypes are interpreted as due to the genotype B(D)/B(T) at the B locus, while the pure-chemotype plants are due to homozygosity at the B locus (either B(D)/B(D) or B(T)/B(T)). It is suggested that such codominance is due to the codification by the two alleles for different isoforms of the same synthase, having different specificity for the conversion of the common precursor cannabigerol into CBD or THC, respectively. The F(2) segregating groups were used in a bulk segregant analysis of the pooled DNAs for screening RAPD primers; three chemotype-associated markers are described, one of which has been transformed in a sequence-characterized amplified region (SCAR) marker and shows tight linkage to the chemotype and codominance.


Assuntos
Canabidiol/metabolismo , Cannabis/genética , Dronabinol/metabolismo , Cannabis/metabolismo , Cruzamentos Genéticos , Marcadores Genéticos , Variação Genética
3.
J Plant Physiol ; 166(10): 1023-33, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19269711

RESUMO

Plant growth regulators are involved in the control of potato (Solanum tuberosum) tuber dormancy. Evidence concerning the role of IAA is controversial; we therefore investigated its role by analyzing two cultivars with varying lengths of dormancy. We examined the time course of free and conjugated IAA in tuber tissue isolates from the final stages of tuber growth to the end of dormancy, the distribution of free IAA in tuber tissues by in situ analysis, and the biosynthesis of the hormone by feeding experiments. The time course of free IAA showed marked differences between the examined cultivars, although the concentration of the auxin generally was the highest at the early stages of tuber dormancy. Immunodetection showed a similar pattern of IAA distribution in both genotypes: in dormant buds from freshly harvested tubers, the free hormone accumulated mostly in apical meristem, leaf and lateral bud primordia, and differentiating vascular tissues underlying the apical meristem, while at the end of the storage period only axillary bud primordia from growing buds displayed appreciable auxin levels. Feeding experiments indicated that changes in IAA biosynthesis rate were a major cause of auxin variation in buds. In both cultivars, dormancy apparently ceased when free IAA fell below a threshold value. Despite this, our data led us to conclude that IAA would not be directly responsible for inhibiting sprouting. Instead, auxin might shorten dormancy, in a cultivar-dependent manner, by enhancing early developmental processes in buds, ultimately leading to dormancy termination.


Assuntos
Ácidos Indolacéticos/metabolismo , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Imuno-Histoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA