RESUMO
Black gram (Vigna mungo L.) plants showing yellow mosaic symptoms during 2019-2022 crop seasons were collected randomly from a Dayalbagh field, Agra Region of Uttar Pradesh, India. Total genomic DNA was isolated from the infected leaf samples by the Cetyltrimethylammonium bromide (CTAB) method and subjected to PCR. After viral confirmation, the viral genome was amplified by rolling circle amplification following the standard protocol. The DNA A and DNA B subgenomes were cloned individually as a PstI and BamHI fragment in the pUC18 vector. Positive clones were subjected to DNA sequencing. The results revealed that DNA A and DNA B show the closest nucleotide identity with "mungbean yellow mosaic India virus-[Mungbean], DNA-A, the complete sequence" (GeneBank Accession No AF416742.1) with 98.14% identity, and "mungbean yellow mosaic India virus isolate Mu1-Dholi segment DNA-B, the complete sequence" (GeneBank Accession No MW814723.1) with 97.94% identity, respectively. The new isolate of mungbean yellow mosaic India virus (MYMIV) shows sequence similarity with the coat protein gene of various strains of MYMIV. In the new isolate of MYMIV, a point mutation was observed at the 2036th nucleotide of DNA B, which disrupts the reading frame to introduce a stop codon and thus leading to a decrease in the size of the movement protein gene. In the present study we are reporting the whole genome sequence of the MYMIV Dayalbagh isolate for the first time.
RESUMO
Yamuna River water in Agra city of India is contaminated with toxic pollutants, including heavy metals that cause damage to the environment and human health. At present, the direct use of river water for drinking purposes and household activities lead to the direct exposure of society to the contaminants. In this study, Yamuna River water samples were collected from three different sites in Agra city during the monsoon, summer, and winter seasons. The physico-chemical parameters were estimated along with heavy metals. In physico-chemical parameter, the values found were mostly above the permissible limits. The results water samples contain high levels of cadmium, chromium, lead, and nickel above the desirable levels in most cases. The metagenomic analysis revealed that Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, and Planctobacteria were the most abundant phyla with a relative abundance of 61%, 9.34%, 5.23%, 4.64%, and 4.3%, respectively. The Comamonadaceae, the most abundant family consists of the genera involved in hydrogen oxidation, iron reduction, degraders of polycyclic aromatic hydrocarbons, and fermentation. The presence of Pseudomonas, Nitrosomonas sp., Thauera humireducens and Dechloromonas denitrificans (decomposition of sewage and organic matter) and Pseudomonas aeruginosa indicates the presence of heavy metal degrading bacteria in water sample. Functional prediction showed the presence of genes responsible for different metabolic pathways that could help developing new bioremediation strategies. The study concludes the status of water contamination, the presence of complex microbial community and suggests the futuristic use and their role in bioremediation.
Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Rios/microbiologia , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Metais Pesados/análise , Bactérias/genética , Água , ÍndiaRESUMO
With the rapid population growth, the world is witnessing an ever-increasing demand for energy and natural resources. Consequently, soil, air, and water are polluted with diverse pollutants, including heavy metals (HM). The detection of heavy metals is necessary to remediate them, which is achieved with biosensors. Initially, these HM were detected using atomic absorption spectroscopy (AAS), emission spectroscopy, mass spectrometry, gas chromatography etc., but these were costly and time consuming which further paved a way for microbe-based biosensors. The development of genetic circuits for microbe-based biosensors has become more popular in recent years for heavy metal detection. In this review, we have especially discussed the various types of genetic circuits such as toggle switches, logic gates, and amplification modules used in these biosensors as they are used to enhance sensitivity and specificity. Genetic circuits also allow for rapid and multiple analyte detection at the same time. The use of microbial biosensors for the detection of HM in the soil as well as the water is also described below. Although with a higher success rate than classical biosensors, these microbial biosensors still have some drawbacks like bioavailability and size of the analyte which are needed to be addressed.
Assuntos
Técnicas Biossensoriais , Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Solo , Água/análise , Técnicas Biossensoriais/métodos , Poluentes do Solo/análiseRESUMO
Of late, image compression has become crucial due to the rising need for faster encoding and decoding. To achieve this objective, the present study proposes the use of canonical Huffman coding (CHC) as an entropy coder, which entails a lower decoding time compared to binary Huffman codes. For image compression, discrete wavelet transform (DWT) and CHC with principal component analysis (PCA) were combined. The lossy method was introduced by using PCA, followed by DWT and CHC to enhance compression efficiency. By using DWT and CHC instead of PCA alone, the reconstructed images have a better peak signal-to-noise ratio (PSNR). In this study, we also developed a hybrid compression model combining the advantages of DWT, CHC and PCA. With the increasing use of image data, better image compression techniques are necessary for the efficient use of storage space. The proposed technique achieved up to 60% compression while maintaining high visual quality. This method also outperformed the currently available techniques in terms of both PSNR (in dB) and bit-per-pixel (bpp) scores. This approach was tested on various color images, including Peppers 512 × 512 × 3 and Couple 256 × 256 × 3, showing improvements by 17 dB and 22 dB, respectively, while reducing the bpp by 0.56 and 0.10, respectively. For grayscale images as well, i.e., Lena 512 × 512 and Boat 256 × 256, the proposed method showed improvements by 5 dB and 8 dB, respectively, with a decrease of 0.02 bpp in both cases.
RESUMO
BACKGROUND: The plant growth is influenced by multiple interactions with biotic (microbial) and abiotic components in their surroundings. These microbial interactions have both positive and negative effects on plant. Plant growth promoting bacterial (PGPR) interaction could result in positive growth under normal as well as in stress conditions. METHODS: Here, we have screened two PGPR's and determined their potential in induction of specific gene in host plant to overcome the adverse effect of biotic stress caused by Magnaporthe grisea, a fungal pathogen that cause blast in rice. We demonstrated the glucanase protein mode of action by performing comparative modeling and molecular docking of guanosine triphosphate (GTP) ligand with the protein. Besides, molecular dynamic simulations have been performed to understand the behavior of the glucanase-GTP complex. RESULTS: The results clearly showed that selected PGPR was better able to induce modification in host plant at morphological, biochemical, physiological and molecular level by activating the expression of ß-1,3-glucanases gene in infected host plant. The docking results indicated that Tyr75, Arg256, Gly258, and Ser223 of glucanase formed four crucial hydrogen bonds with the GTP, while, only Val220 found to form hydrophobic contact with ligand. CONCLUSIONS: The PGPR able to induce ß-1,3-glucanases gene in host plant upon pathogenic interaction and ß-1,3-glucanases form complex with GTP by hydrophilic interaction for induction of defense cascade for acquiring resistance against Magnaporthe grisea.
Assuntos
Magnaporthe , Oryza , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Bactérias , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Ligantes , Magnaporthe/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oryza/genética , Doenças das Plantas/microbiologiaRESUMO
Thousands of energy-aware sensors have been placed for monitoring in a variety of scenarios, such as manufacturing, control systems, disaster management, flood control and so on, requiring time-critical energy-efficient solutions to extend their lifetime. This paper proposes reinforcement learning (RL) based dynamic data streams for time-critical IoT systems in energy-aware IoT devices. The designed solution employs the Q-Learning algorithm. The proposed mechanism has the potential to adjust the data transport rate based on the amount of renewable energy resources that are available, to ensure collecting reliable data while also taking into account the sensor battery lifetime. The solution was evaluated using historical data for solar radiation levels, which shows that the proposed solution can increase the amount of transmitted data up to 23%, ensuring the continuous operation of the device.
RESUMO
Federated Learning (FL) enables multiple clients to train a shared model collaboratively without sharing any personal data. However, selecting a model and adapting it quickly to meet user expectations in a large-scale FL application with heterogeneous devices is challenging. In this paper, we propose a model selection and adaptation system for Federated Learning (FedMSA), which includes a hardware-aware model selection algorithm that trades-off model training efficiency and model performance base on FL developers' expectation. Meanwhile, considering the expected model should be achieved by dynamic model adaptation, FedMSA supports full automation in building and deployment of the FL task to different hardware at scale. Experiments on benchmark and real-world datasets demonstrate the effectiveness of the model selection algorithm of FedMSA in real devices (e.g., Raspberry Pi and Jetson nano).
Assuntos
Algoritmos , Aprendizagem , Aclimatação , Benchmarking , HumanosRESUMO
Hematopoietic syndrome contributes to mortality after exposure to high doses of low LET radiation. In this context, we have earlier demonstrated the potential of G-003 M (a combination of podophyllotoxin and rutin) in alleviating radiation-induced bone marrow suppression. Similarly, we here demonstrate that G-003 M protected mice from death (>83% protection) and increased the populations of CD 34 (Cluster of differentiation 34) as well as CD 117 (Cluster of differentiation 117) positive cell population and their colony forming capacity. This was accompanied with increase in the serum titre of granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF). Interestingly, G-003 M lowered down the titre of fms-like tyrosine kinase (Flt-3) ligands. Our results furthermore demonstrates that G-003 M facilitated the nuclear translocation of ß-catenin and upregulated the expression of Wnt 10b. Conditioning of animal with G-003 M activated the expression of survivin, inhibited the activation of Caspase-3 in CD 34/117+ progenitor stem cells and protected the bone marrow vascularity and splenic colonies in lethally irradiated animals, which collectively promoted hemopoietic recovery in lethally irradiated mice.
Assuntos
Raios gama , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Podofilotoxina/farmacologia , Rutina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Quimioterapia Combinada , Feminino , Células-Tronco Hematopoéticas/metabolismo , Camundongos Endogâmicos C57BL , Podofilotoxina/administração & dosagem , Rutina/administração & dosagem , Regulação para Cima/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacosRESUMO
MAIN CONCLUSION: In this study, useful hybrid promoters were developed for efficient ectopic gene expression in monocot and dicot plants, and they hold strong prominence in both transgenic research and biotech industries. This study deals with developing novel synthetic promoters derived from Rice Tungro Bacilliform Virus (RTBV) and Mirabilis Mosaic Virus (MMV). Despite numerous availability, there is a severe scarcity of promoters universally suitable for monocot and dicot plants. Here, eight chimeric promoter constructs were synthesized as gBlocks gene fragments through domain swapping and hybridization by incorporating important domains of previously characterized RTBV and MMV promoters. The developed promoter constructs were assessed for transient GUS expression in tobacco protoplast (Xanthi Brad) and agro-infiltrated tobacco, petunia, rice and pearl millet. Protoplast expression analysis showed that two promoter constructs, namely pUPMA-RP1-MP1GUS and pUPMA-RP4-MP1GUS exhibited 3.56 and 2.5 times higher activities than that of the CaMV35S promoter. We had observed the similar type of expression patterns of these promoters in agroinfiltration-based transient studies. RP1-MP1 and RP4-MP1 promoters exhibited 1.87- and 1.68-fold increase expression in transgenic tobacco plants; while, a 1.95-fold increase was found in RP1-MP1 transgenic rice plants when compared their activities with CaMV35S promoter. Furthermore, on evaluating these promoter constructs for their expression in the bacterial system, pUPMA-RP1-MP1GFP was found to have the highest GFP expression. Moreover, the promoter construct was also evaluated for its capacity to express the HMP3 gene. Biobeads of encapsulated bacterial cells expressing HMP3 gene under control of the pUPMA-RP4-MP1 promoter were found to reduce 72.9% copper and 29.2% zinc concentration from wastewater. Our results had demonstrated that the developed promoter constructs could be used for translational research in dicot, monocot plants and bacterial systems for efficient gene expression.
Assuntos
Caulimovirus , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Caulimovirus/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Nicotiana/genéticaRESUMO
It has been well established that radiation-induced gastrointestinal injury is manifested through loss of intestinal crypt stem cells and disruption of the mucosal layers, resulting in diarrhoea, weight loss, electrolyte imbalance, infection and mortality. Podophyllotoxin and rutin in combination (G-003M) has been reported to regulate endogenous cellular antioxidant defense systems and inflammatory response. However, the mechanism by which G-003M ameliorates radiation-induced intestinal stem cell (ISC) injury remains unclear. Here, we hypothesize the radioprotective potential of G-003M would amplify the intestinal crypt stem cells through upregulation of Wnt/ß-catenin signaling and accelerate the reconstitution of the irradiated intestine. Our results showed significant functional and structural intestine regeneration in irradiated animals following G-003M treatment which resulted in improved animal survival. Immunohistochemical examination revealed an enhancement in Lgr5+ ve crypt stem cells. Increased ß-catenin nuclear translocation resulted in upregulation of ß-catenin target genes that supported ISC renewal and expansion in G-003M-treated mice, as compared to IR-treated mice. However, G-003M could not rescue the Wnt knockdown cohorts (XAV939 treated) which exhibited greater incidence of intestinal apoptosis, DNA damage and crypt depopulation upon radiation exposure. These findings suggest the involvement of Wnt pathway during G-003M mediated amelioration of IR-induced ISC injury. G-003M also minimised acute inflammation by restricting the infiltration of immune cells into the intestinal venules. Furthermore, G-003M treated animals showed improved anti-tumor response compared to FDA approved Amifostine. Taken together, our findings suggest that G-003M may be used as a potential countermeasure for radiation injuries as well as an adjuvant during anti-cancer therapy.
Assuntos
Intestinos/efeitos dos fármacos , Podofilotoxina/fisiologia , Lesões por Radiação/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Rutina/fisiologia , Células-Tronco/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Dano ao DNA/efeitos dos fármacos , Quimioterapia Combinada/métodos , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões por Radiação/metabolismo , Protetores contra Radiação/farmacologia , Células-Tronco/metabolismo , Regulação para Cima/efeitos dos fármacos , beta Catenina/metabolismoRESUMO
Heavy metals, being toxic in nature, are one of the most persistent problems in wastewater. Unabated discharge of large amount of heavy metals into water bodies are known to cause several environmental and health impacts. Biological remediation processes like microbial remediation and phytoremediation are proved to be very effective in the reduction of heavy metal pollutants in wastewater. To circumvent the issues involved several peptides and proteins are being explored. Metal-binding capacity, accumulation, and tolerance of heavy metals in bacteria can be upsurge by overexpressing the genes which code for metal-binding proteins. In the present study, an attempt has been made to bioremediate heavy metal toxicity by overexpressing metal-binding proteins. Two expression cassettes harboring top4 metal-binding protein (T4MBP) and human metallothionein 3 (HMP3) were designed under the control of constitutive CaMV 35S promoter and transformed into E.coli TBI cells. E.coli over expressing HMP3 and T4MBP were immobilized in biobeads which were explored for the detoxification of water contaminated with copper and cadmium. Effects on the concentration of heavy metal before and after treatment with beads were estimated with the help of ICP-OES. Noteworthy results were obtained in the case of copper with 87.2% decrease in its concentration after treatment with biobeads. Significant decrement of 32.8% and 27.3% was found in case of zinc and cadmium, respectively. Mechanisms of binding of proteins with heavy metals were further validated by molecular modeling and metal-binding analysis. HMP3 protein was found to be more efficient in metal accumulation as compared with T4MBP. The fabricated biobeads in this study definitely offer an easy and user-handy approach towards the treatment of toxic wastewater.
Assuntos
Biodegradação Ambiental , Metais Pesados/isolamento & purificação , Proteínas do Tecido Nervoso/metabolismo , Águas Residuárias , Purificação da Água/métodos , Cádmio/isolamento & purificação , Quelantes , Cobre/isolamento & purificação , Escherichia coli/genética , Humanos , Metalotioneína 3 , Regiões Promotoras Genéticas , Ligação Proteica , Zinco/isolamento & purificaçãoRESUMO
The paper describes briefly the process performance and the reuse potential of a laboratory scale wastewater treatment system. The treatment involves enhanced primary treatment of Vellore Institute of Technology (VIT) campus sewage using ferric chloride as a coagulant, anaerobic digestion of coagulated organics, and biofilm aerobic process. The treated effluent after disinfection (using sunlight and chlorine) was used for irrigation of Tagetes erecta (marigold) plants and the plant growth parameters were evaluated for a life span of 3 months. In the primary treatment, an optimum ferric chloride dose of 30 mg/L could remove turbidity, chemical oxygen demand (COD), biochemical oxygen demand (BOD), and bacterial count (Escherichia coli) of 69%, 60%, 77%, and 55%, respectively. The coagulated organics could digest in a 25 L anaerobic reactor effectively with methane content in biogas varied between 50 and 60% and enhanced volatile suspended solids (VSS) reduction up to 70%. Sunlight based photo-oxidation followed chlorine disinfection saved 50% of the chlorine dose required for disinfection and treated effluent was fit for reuse. The results of growth parameters for Tagetes erecta plants indicate that anaerobically digested sludge is an excellent soil conditioner cum nutrient supplier. The results of this study exhibit a promising reuse potential of a decentralized wastewater treatment system and needs to be promoted for field scale applications.
Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Desinfecção , Metano , Eliminação de Resíduos LíquidosRESUMO
In the present study, we developed a set of three chimeric/hybrid promoters namely FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt incorporating different important domains of Figwort Mosaic Virus sub-genomic transcript promoter (FSgt, -270 to -60), Mirabilis Mosaic Virus sub-genomic transcript promoter (MSgt, -306 to -125) and Peanut Chlorotic Streak Caulimovirus full-length transcript promoter (PFlt-, -353 to +24 and PFlt-UAS, -353 to -49). We demonstrated that these chimeric/hybrid promoters can drive the expression of reporter genes in different plant species including tobacco, Arabidopsis, petunia, tomato and spinach. FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt promoters showed 4.2, 1.5 and 1.2 times stronger GUS activities compared to the activity of the CaMV35S promoter, respectively, in tobacco protoplasts. Protoplast-derived recombinant promoter driven GFP showed enhanced accumulation compared to that obtained under the CaMV35S promoter. FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt promoters showed 3.0, 1.3 and 1.0 times stronger activities than the activity of the CaMV35S² (a modified version of the CaMV35S promoter with double enhancer domain) promoter, respectively, in tobacco (Nicotiana tabacum, var. Samsun NN). Alongside, we observed a fair correlation between recombinant promoter-driven GUS accumulation with the corresponding uidA-mRNA level in transgenic tobacco. Histochemical (X-gluc) staining of whole transgenic seedlings and fluorescence images of ImaGene Green™ treated floral parts expressing the GUS under the control of recombinant promoters also support above findings. Furthermore, we confirmed that these chimeric promoters are inducible in the presence of 150 µM salicylic acid (SA) and abscisic acid (ABA). Taken altogether, we propose that SA/ABA inducible chimeric/recombinant promoters could be used for strong expression of gene(s) of interest in crop plants.
Assuntos
Caulimovirus/genética , Produtos Agrícolas/genética , DNA Recombinante , Vetores Genéticos , Reguladores de Crescimento de Plantas/farmacologia , Regiões Promotoras Genéticas/genética , Ácido Abscísico/farmacologia , Produtos Agrícolas/citologia , Produtos Agrícolas/efeitos dos fármacos , Primers do DNA/genética , Flores/citologia , Flores/efeitos dos fármacos , Flores/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Reporter , Plantas Geneticamente Modificadas , Protoplastos , Ácido Salicílico/farmacologia , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/genética , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/genética , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Transcrição GênicaRESUMO
JNI in the Android platform is often observed with low efficiency and high coding complexity. Although many researchers have investigated the JNI mechanism, few of them solve the efficiency and the complexity problems of JNI in the Android platform simultaneously. In this paper, a hybrid polylingual object (HPO) model is proposed to allow a CAR object being accessed as a Java object and as vice in the Dalvik virtual machine. It is an acceptable substitute for JNI to reuse the CAR-compliant components in Android applications in a seamless and efficient way. The metadata injection mechanism is designed to support the automatic mapping and reflection between CAR objects and Java objects. A prototype virtual machine, called HPO-Dalvik, is implemented by extending the Dalvik virtual machine to support the HPO model. Lifespan management, garbage collection, and data type transformation of HPO objects are also handled in the HPO-Dalvik virtual machine automatically. The experimental result shows that the HPO model outweighs the standard JNI in lower overhead on native side, better executing performance with no JNI bridging code being demanded.
Assuntos
Linguagens de Programação , Algoritmos , Modelos TeóricosRESUMO
There is an urgent need to combat pathogen infestations in crop plants to ensure food security worldwide. To counter this, plants have developed innate immunity mediated by Pattern Recognition Receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage- associated molecular patterns (DAMPs). PRRs activate Pattern-Triggered Immunity (PTI), a defence mechanism involving intricate cell-surface and intracellular receptors. The diverse ligand-binding ectodomains of PRRs, including leucine-rich repeats (LRRs) and lectin domains, facilitate the recognition of MAMPs and DAMPs. Pathogen resistance is mediated by a variety of PTI responses, including membrane depolarization, ROS production, and the induction of defence genes. An integral part of intracellular immunity is the Nucleotide-binding Oligomerization Domain, Leucine-rich Repeat proteins (NLRs) which recognize and respond to effectors in a potent manner. Enhanced understanding of PRRs, their ligands, and downstream signalling pathways has contributed to the identification of potential targets for genetically modified plants. By transferring PRRs across plant species, it is possible to create broad-spectrum resistance, potentially offering innovative solutions for plant protection and global food security. The purpose of this chapter is to provide an update on PRRs involved in disease resistance, clarify the mechanisms by which PRRs recognize ligands to form active receptor complexes and present various applications of PRRs and PTI in disease resistance management for plants.
Assuntos
Plantas Geneticamente Modificadas , Receptores de Reconhecimento de Padrão , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Imunidade VegetalRESUMO
The growing population, climate change, and limited agricultural resources put enormous pressure on agricultural systems. A plateau in crop yields is occurring and extreme weather events and urbanization threaten the livelihood of farmers. It is imperative that immediate attention is paid to addressing the increasing food demand, ensuring resilience against emerging threats, and meeting the demand for more nutritious, safer food. Under uncertain conditions, it is essential to expand genetic diversity and discover novel crop varieties or variations to develop higher and more stable yields. Genomics plays a significant role in developing abundant and nutrient-dense food crops. An alternative to traditional breeding approach, translational genomics is able to improve breeding programs in a more efficient and precise manner by translating genomic concepts into practical tools. Crop breeding based on genomics offers potential solutions to overcome the limitations of conventional breeding methods, including improved crop varieties that provide more nutritional value and are protected from biotic and abiotic stresses. Genetic markers, such as SNPs and ESTs, contribute to the discovery of QTLs controlling agronomic traits and stress tolerance. In order to meet the growing demand for food, there is a need to incorporate QTLs into breeding programs using marker-assisted selection/breeding and transgenic technologies. This chapter primarily focuses on the recent advances that are made in translational genomics for crop improvement and various omics techniques including transcriptomics, metagenomics, pangenomics, single cell omics etc. Numerous genome editing techniques including CRISPR Cas technology and their applications in crop improvement had been discussed.
Assuntos
Perfilação da Expressão Gênica , Genômica , Fenótipo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Next-generation sequencing (NGS) has revolutionized the analysis of specific genes, pathways, and their regulation in various species. Tribulus terrestris L., an annual medicinal herb of Zygophyllaceae family, has gained significant attention due to its diverse medicinal properties, including anti-inflammatory, antimicrobial, and anti-cancer effects. Diosgenin, a steroidal saponin, is the major bioactive compound responsible for the medicinal importance of T. terrestris. However, there is a paucity of information regarding the genes involved in the diosgenin biosynthetic pathway in T. terrestris. To address this gap, this study aimed to identify candidate genes associated with diosgenin biosynthesis through whole transcriptome profiling. A total of â¼7.9 GB of data, comprising 482 million reads, was obtained and assembled into 148,871 unigenes. Subsequently, functional annotations were assigned to 50 % of the unigenes using sequence similarity searches against the NCBI non-redundant (NR), Uniprot, KEGG, Pfam, GO, and COG databases, primarily based on Gene Ontology and KEGG-KAAS pathways. The majority of unigenes associated with the biosynthesis of the steroidal diosgenin backbone exhibited up-regulation in the fruit, leaf, and root tissues, except the SQE gene in root. The differential expression of selected genes was further validated through quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the study identified 21,026 unigenes related to transcription factors and 15,551 unigenes containing simple sequence repeats (SSR). Notably, di-nucleotide SSR motifs exhibited a high repeat frequency. These findings greatly enhance our understanding of the diosgenin biosynthesis pathway and provide a basis for future research in molecular investigation and metabolic engineering, specifically for boosting diosgenin content.
Assuntos
Diosgenina , Plantas Medicinais , Tribulus , Tribulus/genética , Plantas Medicinais/genética , Bases de Dados Factuais , Perfilação da Expressão GênicaRESUMO
Background: The new competency-based curriculum incorporates the social sciences and humanism to the basic and clinical sciences, thus giving an integrated approach to medical education. Comparing the empathy score with the motivation level across the two curricula was thus planned to assess the current status. Method: A cross-sectional qualitative study using an Internet-based electronic survey containing both an academic motivation scale to assess the motivation level and Jefferson's scale of empathy was used to assess empathy score. Result: From the above study, we concluded that males have a higher empathy score across both the curricula. >95% of students of both categories belonged to the High Intrinsic High Control motivational category. The empathy scores were slightly higher among the CBME (Competency Based Medical Education) group compared to the non-CBME group, but it was not statistically significant. In subgroup analysis, Phase 3 was found to have a significant association. Conclusion: The majority of the students fall in the High Intrinsic High Control category, where they have the next highest level of empathy. Phase 2 was found to have a significant association; it could be because of the positive effects of AETCOM classes on the ready-to-enter clinical exposure batch. The study also revealed that while motivation and empathy are generally linked, outliers existed, particularly among participants with low initial motivation but high empathy. This suggests a potential association between extrinsic motivation and empathy, possibly influenced by external factors.
RESUMO
Background A comprehensive understanding of the anatomy of the obturator nerve after its emergence from the obturator foramen is essential when undertaking an obturator nerve block effectively. This study was conducted to provide precise anatomical guidance of the obturator nerve block with surface landmarks in the inguinal region. Materials and methods A cross-sectional observational study was carried out on 34 dissected embalmed cadaveric lower limbs to investigate anatomic variability of obturator nerve localization concerning bony/ligamentous landmarks viz. the pubic tubercle, anterior superior iliac spine, inguinal ligament, and femoral artery as well as the adductor longus. Results The pubic tubercle and inguinal ligament were found to be the "least variable indicator" and palpable landmark for localization of the main trunk of the obturator nerve exhibiting lesser standard deviation of the mean distance from the obturator nerve exit. Among the soft tissue (vessel/muscle) parameters, the shortest distance of the adductor longus muscle from the obturator nerve exit was found to have the lowest standard deviation, thus making it the most reliable parameter for obturator nerve localization. Conclusion High anatomic variability in the obturator nerve's localization does exist, and this explains the difficulty frequently encountered in the application of regional anesthetic techniques. The pubic tubercle and inguinal ligament points were found to be the least variable and most reliable landmarks for localization of the main trunk of the obturator nerve.