RESUMO
AIM: We planned a cross-sectional investigation (study 1) and a longitudinal training intervention (study 2) to investigate whether recreational dancing affords greater neuroprotective effects against age-related neuromuscular junction (NMJ) degeneration compared to general fitness exercise training. METHODS: In study 1, we recruited 19 older volunteers regularly practising dancing (older dancers [OD]) and 15 recreationally physically active older individuals (OA) and physical performance, muscle morphology, muscle function, and NMJ stability (from serum C-terminal agrin fragment [CAF] concentration) were assessed. In study 2, employing a longitudinal study design in a different cohort (composed of 37 older adults), we aimed to study whether a 6-month dancing intervention decreased CAF concentration compared to general fitness exercise training in older adults. RESULTS: Our findings show that OD had a lower CAF concentration (suggesting an increased NMJ stability) compared to OA. This result was accompanied by superior functional performance despite no differences in muscle size. In study 2, we observed a reduction in CAF concentration only in the dancing group. CONCLUSION: Overall, these findings suggest that dancing is an effective training modality to promote neuroprotection and increase muscle function in healthy older individuals.
Assuntos
Dança , Fármacos Neuroprotetores , Humanos , Idoso , Dança/fisiologia , Estudos Longitudinais , Estudos Transversais , EnvelhecimentoRESUMO
Leucine modulates muscle protein synthesis (MPS), with potential to facilitate accrual/maintenance of muscle mass. Animal models suggest that leucine boluses shortly after meals may prolong MPS and delay onset of a "muscle-full" state. However, the effects of nutrient "top-ups" in humans, and particularly older adults where deficits exist, have not been explored. We determined the effects of a leucine top-up after essential amino acid (EAA) feeding on anabolic signaling, MPS, and muscle energy metabolism in older men. During 13C6-phenylalanine infusion, 16 men (â¼70 years) consumed 15 g of EAA with (n=8, FED + LEU) or without (n=8, FED) 3 g of leucine top-up 90 min later. Repeated blood and muscle sampling permitted measurement of fasting and postprandial plasma EAA, insulin, anabolic signaling including mTOR complex 1 (mTORC1) substrates, cellular ATP and phosphorylocreatine, and MPS. Oral EAA achieved rapid insulinemia (12.5 iU·ml-1 25 min post-feed), essential aminoacidemia (3000 µM, 45-65 min post-feed), and activation of mTORC1 signaling. Leucine top-up prolonged plasma EAA (2800 µM, 135 min) and leucine availability (1050 µM, 135 min post-feed). Fasting FSRs of 0.046 and 0.056%·h-1 (FED and FED + LEU respectively) increased to 0.085 and 0.085%·h-1 90-180 min post-feed and returned to basal rates after 180 min in both groups. Phosphorylation of mTORC1 substrates returned to fasting levels 240 min post-feed in both groups. Feeding had limited effect on muscle high-energy phosphates, but did induce eukaryotic elongation factor 2 (eEF2) phosphorylation. We demonstrate the refractoriness of muscle to nutrient-led anabolic stimulation in the postprandial period; thus, leucine supplements should be taken outside of meals, or with meals containing suboptimal protein in terms of either amount or EAA composition.
Assuntos
Envelhecimento/metabolismo , Anabolizantes/administração & dosagem , Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Leucina/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Período Pós-Prandial , Biossíntese de Proteínas/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Fatores Etários , Idoso , Envelhecimento/sangue , Anabolizantes/sangue , Humanos , Insulina/sangue , Leucina/sangue , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Fosfocreatina/metabolismo , Fosforilação , Estudos Prospectivos , Fatores Sexuais , Serina-Treonina Quinases TOR/metabolismo , Fatores de TempoRESUMO
Essential amino acids (EAA) are responsible for skeletal muscle anabolic effects after nutrient intake. The pattern of appearance of EAA in blood, e.g., after intake of "slow" or "fast" protein sources or in response to grazing vs. bolus feeding patterns, may impact anabolism. However, the influence of this on muscle anabolism is poorly understood, particularly in older individuals. We determined the effects of divergent feeding profiles of EAA on blood flow, anabolic signaling, and muscle protein synthesis (MPS) in older men. Sixteen men (â¼70 yr) consumed EAA either as a single dose (bolus, 15 g; n = 8) or as small repeated fractions (pulse, 4 × 3.75 g every 45 min; n = 8) during (13)C6 phenylalanine infusion. Repeated blood samples and muscle biopsies permitted measurement of fasting and postprandial plasma EAA, insulin, anabolic signaling, and MPS. Muscle blood flow was assessed by contrast-enhanced ultrasound (Sonovue). Bolus achieved rapid insulinemia (12.7 µiU/ml 25-min postfeed), essential aminoacidemia (â¼3,000 µM, 45-65 min postfeed), and mTORC1 activity; pulse achieved attenuated insulin responses, gradual low-amplitude aminoacidemia (â¼1,800 µM 80-195 min after feeding), and undetectable mTORC1 signaling. Despite this, equivalent anabolic responses were observed: fasting FSRs of 0.051 and 0.047%/h (bolus and pulse, respectively) increased to 0.084 and 0.073%/h, respectively. Moreover, pulse led to sustainment of MPS beyond 180 min, when bolus MPS had returned to basal rates. We detected no benefit of rapid aminoacidemia in this older population despite enhanced anabolic signaling and greater overall EAA exposure. Rather, apparent delayed onset of the "muscle-full" effect permitted identical MPS following low-amplitude-sustained EAA exposure.
Assuntos
Aminoácidos Essenciais/administração & dosagem , Proteínas Musculares/biossíntese , Fenilalanina/administração & dosagem , Músculo Quadríceps/metabolismo , Idoso , Aminoácidos Essenciais/metabolismo , Isótopos de Carbono/administração & dosagem , Isótopos de Carbono/metabolismo , Humanos , Insulina/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Fenilalanina/metabolismo , Biossíntese de Proteínas , Músculo Quadríceps/irrigação sanguínea , Músculo Quadríceps/diagnóstico por imagem , Fluxo Sanguíneo Regional , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , UltrassonografiaRESUMO
Dysregulated anabolic responses to nutrition/exercise may contribute to sarcopenia; however, these characteristics are poorly defined in female populations. We determined the effects of two feeding regimes in older women (66 ± 2.5 yr; n = 8/group): bolus whey protein (WP-20 g) or novel low-dose leucine-enriched essential amino acids (EAA) [LEAA; 3 g (40% leucine)]. Using [(13)C6]phenylalanine infusions, we quantified muscle (MPS) and albumin (APS) protein synthesis at baseline and in response to both feeding (FED) and feeding plus exercise (FED-EX; 6 × 8 knee extensions at 75% 1-repetition maximum). We also quantified plasma insulin/AA concentrations, whole leg (LBF)/muscle microvascular blood flow (MBF), and muscle anabolic signaling by phosphoimmunoblotting. Plasma insulinemia and EAA/aemia were markedly greater after WP than LEAA (P < 0.001). Neither LEAA nor WP modified LBF in response to FED or FED-EX, whereas MBF increased to a similar extent in both groups only after FED-EX (P < 0.05). In response to FED, both WP and LEAA equally stimulated MPS 0-2 h (P < 0.05), abating thereafter (0-4 h, P > 0.05). In contrast, after FED-EX, MPS increased at 0-2 h and remained elevated at 0-4 h (P < 0.05) with both WP and LEAA. No anabolic signals quantifiably increased after FED, but p70 S6K1 Thr(389) increased after FED-EX (2 h, P < 0.05). APS increased similarly after WP and LEAA. Older women remain subtly responsive to nutrition ± exercise. Intriguingly though, bolus WP offers no trophic advantage over LEAA.
Assuntos
Aminoácidos Essenciais/administração & dosagem , Proteínas Alimentares/administração & dosagem , Exercício Físico/fisiologia , Leucina/administração & dosagem , Proteínas do Leite/administração & dosagem , Proteínas Musculares/biossíntese , Músculo Esquelético/efeitos dos fármacos , Descanso/fisiologia , Idoso , Aminoácidos Essenciais/sangue , Dieta , Suplementos Nutricionais , Feminino , Humanos , Insulina/sangue , Leucina/sangue , Pessoa de Meia-Idade , Proteínas Musculares/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas do Soro do LeiteRESUMO
BACKGROUND: The anabolic response of skeletal muscle to essential amino acids (EAAs) is dose dependent, maximal at modest doses, and short lived, even with continued EAA availability, a phenomenon termed "muscle-full." However, the effect of EAA ingestion profile on muscle metabolism remains undefined. OBJECTIVE: We determined the effect of Bolus vs. Spread EAA feeding in young men and hypothesized that muscle-full is regulated by a dose-, not delivery profile-, dependent mechanism. METHODS: We provided 16 young healthy men with 15 g mixed-EAA, either as a single dose ("Bolus"; n = 8) or in 4 fractions at 45-min intervals ("Spread"; n = 8). Plasma insulin and EAA concentrations were assayed by ELISA and ion-exchange chromatography, respectively. Limb blood flow by was determined by Doppler ultrasound, muscle microvascular flow by Sonovue (Bracco) contrast-enhanced ultrasound, and phosphorylation of mammalian target of rapamycin complex 1 substrates by immunoblotting. Intermittent muscle biopsies were taken to quantify myofibrillar-bound (13)C6-phenylalanine to determine muscle protein synthesis (MPS). RESULTS: Bolus feeding achieved rapid insulinemia (13.6 µIU · mL(-1), 25 min after commencement of feeding), aminoacidemia (â¼2500 µM at 45 min), and capillary recruitment (+45% at 45 min), whereas Spread feeding achieved attenuated insulin responses, gradual low-amplitude aminoacidemia (peak: â¼1500 µM at 135 min), and no detectable capillary recruitment (all P < 0.01 vs. Bolus). Despite these differences, identical anabolic responses were observed; fasting fractional synthetic rates of 0.054% · h(-1) (Bolus) and 0.066% · h(-1) (Spread) increased to 0.095% and 0.104% · h(-1) (no difference in increment or final values between regimens). With both Spread and Bolus feeding strategies, a latency of at least 90 min was observed before an upswing in MPS was evident. Similarly with both feeding strategies, MPS returned to fasting rates by 180 min despite elevated circulating EAAs. CONCLUSION: These data do not support EAA delivery profile as an important determinant of anabolism in young men at rest, nor rapid aminoacidemia/leucinemia as being a key factor in maximizing MPS. This trial was registered at clinicaltrials.gov as NCT01735539.
Assuntos
Aminoácidos Essenciais/administração & dosagem , Músculo Esquelético/fisiologia , Administração Oral , Aminoácidos Essenciais/sangue , Estudos Transversais , Relação Dose-Resposta a Droga , Humanos , Insulina/sangue , Masculino , Proteínas Musculares/metabolismo , Fenilalanina/sangue , Fosforilação , Biossíntese de Proteínas , Adulto JovemRESUMO
The increasing prevalence of behavioral disorders in children is of growing concern within the medical community. Recognising the significance of early identification and intervention for atypical behaviors, there is a consensus on their pivotal role in improving outcomes. Due to inadequate facilities and a shortage of medical professionals with specialized expertise, traditional diagnostic methods have been unable to effectively address the rising incidence of behavioral disorders. Hence, there is a need to develop automated approaches for the diagnosis of behavioral disorders in children, to overcome the challenges with traditional methods. The purpose of this study is to develop an automated model capable of analyzing videos to differentiate between typical and atypical repetitive head movements in. To address problems resulting from the limited availability of child datasets, various learning methods are employed to mitigate these issues. In this work, we present a fusion of transformer networks, and Non-deterministic Finite Automata (NFA) techniques, which classify repetitive head movements of a child as typical or atypical based on an analysis of gender, age, and type of repetitive head movement, along with count, duration, and frequency of each repetitive head movement. Experimentation was carried out with different transfer learning methods to enhance the performance of the model. The experimental results on five datasets: NIR face dataset, Bosphorus 3D face dataset, ASD dataset, SSBD dataset, and the Head Movements in the Wild dataset, indicate that our proposed model has outperformed many state-of-the-art frameworks when distinguishing typical and atypical repetitive head movements in children.
Assuntos
Movimentos da Cabeça , Transtornos Mentais , Criança , Humanos , Comportamento Estereotipado , Medição de Risco , EndoscopiaRESUMO
BACKGROUND: Synthetic tabular data generation is a potentially valuable technology with great promise for data augmentation and privacy preservation. However, prior to adoption, an empirical assessment of generated synthetic tabular data is required across dimensions relevant to the target application to determine its efficacy. A lack of standardized and objective evaluation and benchmarking strategy for synthetic tabular data in the health domain has been found in the literature. OBJECTIVE: The aim of this paper is to identify key dimensions, per dimension metrics, and methods for evaluating synthetic tabular data generated with different techniques and configurations for health domain application development and to provide a strategy to orchestrate them. METHODS: Based on the literature, the resemblance, utility, and privacy dimensions have been prioritized, and a collection of metrics and methods for their evaluation are orchestrated into a complete evaluation pipeline. This way, a guided and comparative assessment of generated synthetic tabular data can be done, categorizing its quality into three categories ("Excellent," "Good," and "Poor"). Six health care-related datasets and four synthetic tabular data generation approaches have been chosen to conduct an analysis and evaluation to verify the utility of the proposed evaluation pipeline. RESULTS: The synthetic tabular data generated with the four selected approaches has maintained resemblance, utility, and privacy for most datasets and synthetic tabular data generation approach combination. In several datasets, some approaches have outperformed others, while in other datasets, more than one approach has yielded the same performance. CONCLUSION: The results have shown that the proposed pipeline can effectively be used to evaluate and benchmark the synthetic tabular data generated by various synthetic tabular data generation approaches. Therefore, this pipeline can support the scientific community in selecting the most suitable synthetic tabular data generation approaches for their data and application of interest.
Assuntos
Informática , PrivacidadeRESUMO
Background: Healthcare data is a rich yet underutilized resource due to its disconnected, heterogeneous nature. A means of connecting healthcare data and integrating it with additional open and social data in a secure way can support the monumental challenge policy-makers face in safely accessing all relevant data to assist in managing the health and wellbeing of all. The goal of this study was to develop a novel health data platform within the MIDAS (Meaningful Integration of Data Analytics and Services) project, that harnesses the potential of latent healthcare data in combination with open and social data to support evidence-based health policy decision-making in a privacy-preserving manner. Methods: The MIDAS platform was developed in an iterative and collaborative way with close involvement of academia, industry, healthcare staff and policy-makers, to solve tasks including data storage, data harmonization, data analytics and visualizations, and open and social data analytics. The platform has been piloted and tested by health departments in four European countries, each focusing on different region-specific health challenges and related data sources. Results: A novel health data platform solving the needs of Public Health decision-makers was successfully implemented within the four pilot regions connecting heterogeneous healthcare datasets and open datasets and turning large amounts of previously isolated data into actionable information allowing for evidence-based health policy-making and risk stratification through the application and visualization of advanced analytics. Conclusions: The MIDAS platform delivers a secure, effective and integrated solution to deal with health data, providing support for health policy decision-making, planning of public health activities and the implementation of the Health in All Policies approach. The platform has proven transferable, sustainable and scalable across policies, data and regions.
Assuntos
Atenção à Saúde , Política de Saúde , Tomada de Decisões , Humanos , Armazenamento e Recuperação da Informação , Saúde PúblicaRESUMO
Chronic reductions in tissue O(2) tension (hypoxia) are associated with muscle atrophy and blunted hypertrophic responses to resistance exercise (RE) training. However, the effect of hypoxia on muscle protein synthesis (MPS) at rest and after RE is unknown. In a crossover study, seven healthy men (21.4 ± 0.7 yr) performed unilateral leg RE (6 × 8 repetitions at 70% 1-repetition maximum) under normoxic (20.9% inspired O(2)) and normobaric hypoxic (12% inspired O(2) for 3.5 h) postabsorptive conditions. Immediately after RE the rested leg was biopsied, and a primed continuous infusion of [1,2-(13)C(2)]leucine was maintained for 2.5 h before final biopsies from both legs to measure tracer incorporation and signaling responses (i.e., ribosomal S6 kinase 1). After 3.5 h of hypoxia, MPS was not different from normoxia in the rested leg (normoxia 0.033 ± 0.016 vs. hypoxia 0.043 ± 0.016%/h). MPS increased significantly from baseline 2.5 h after RE in normoxia (0.033 ± 0.016 vs. 0.104 ± 0.038%/h) but not hypoxia (0.043 ± 0.016 vs. 0.060 ± 0.063%/h). A significant linear relationship existed between MPS 2.5 h after RE in hypoxia and mean arterial blood O(2) saturation during hypoxia (r(2) = 0.49, P = 0.04). Phosphorylation of p70S6K(Thr389) remained unchanged in hypoxia at rest but increased after RE in both normoxia and hypoxia (2.6 ± 1.2-fold and 3.4 ± 1.1-fold, respectively). Concentrations of the hypoxia-responsive mTOR inhibitor regulated in development and DNA damage-1 were unaltered by hypoxia or RE. We conclude that normobaric hypoxia does not reduce MPS over 3.5 h at rest but blunts the increased MPS response to acute RE to a degree dependent on extant SpO(2).
Assuntos
Exercício Físico/fisiologia , Hipóxia/metabolismo , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Estudos Cross-Over , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Fosforilação/fisiologia , Treinamento Resistido , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Adulto JovemRESUMO
Increased dietary LCn-3PUFA (long-chain n-3 polyunsaturated fatty acid) intake stimulates muscle protein anabolism in individuals who experience muscle loss due to aging or cancer cachexia. However, it is not known whether LCn-3PUFAs elicit similar anabolic effects in healthy individuals. To answer this question, we evaluated the effect of 8 weeks of LCn-3PUFA supplementation (4 g of Lovaza®/day) in nine 25-45-year-old healthy subjects on the rate of muscle protein synthesis (by using stable isotope-labelled tracer techniques) and the activation (phosphorylation) of elements of the mTOR (mammalian target of rapamycin)/p70S6K (p70 S6 kinase) signalling pathway during basal post-absorptive conditions and during a hyperinsulinaemic-hyperaminoacidaemic clamp. We also measured the concentrations of protein, RNA and DNA in muscle to obtain indices of the protein synthetic capacity, translational efficiency and cell size. Neither the basal muscle protein fractional synthesis rate nor basal signalling element phosphorylation changed in response to LCn-3PUFA supplementation, but the anabolic response to insulin and amino acid infusion was greater after LCn-3PUFA [i.e. the muscle protein fractional synthesis rate during insulin and amino acid infusion increased from 0.062±0.004 to 0.083±0.007%/h and the phospho-mTOR (Ser2448) and phospho-p70S6K (Thr389) levels increased by â¼50%; all P<0.05]. In addition, the muscle protein concentration and the protein/DNA ratio (i.e. muscle cell size) were both greater (P<0.05) after LCn-3PUFA supplementation. We conclude that LCn-3PUFAs have anabolic properties in healthy young and middle-aged adults.
Assuntos
Aminoácidos/sangue , Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Hiperinsulinismo/metabolismo , Proteínas Musculares/biossíntese , Adulto , Glicemia/metabolismo , Tamanho Celular , Citocinas/sangue , Avaliação de Medicamentos/métodos , Feminino , Humanos , Insulina/sangue , Masculino , Adesão à Medicação , Pessoa de Meia-Idade , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fenilalanina/metabolismo , Fosfolipídeos/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
Traditionally General Practitioner (GP) practices have been labelled as being in Rural, Urban or Semi-Rural areas with no statistical method of identifying which practices fall into each category. The main aim of this study is to investigate whether location and other characteristics can provide a tautology to identify different types of GP practice and compare the prescribing behaviours associated with the different practice types. To achieve this monthly open source prescription data were analysed by practice considering location, practice size, population density and deprivation rankings. One year's data was subjected to k-means clustering with the results showing that only two different types of GP practice can be classified that are dependent on location characteristics in Northern Ireland. Traditional labels did not describe the two classifications fully and new classifications of Metropolitan and Non-Metropolitan were used. Whilst prescribing patterns were generally similar, it was found that Metropolitan practices generally had higher prescribing rates than Non-Metropolitan practices. Examining prescribing behaviours in accordance with British National Formulary (BNF) categories (known as chapters) showed that Chapter 4 (Central Nervous System) was responsible for most of the difference in prescribing levels. Within Chapter 4 higher prescribing levels were attributable to Analgesic and Antidepressant prescribing. The clusters were finally examined regarding the level of deprivation experienced in the area in which the practice was located. This showed that the Metropolitan cluster, having higher prescription rates, also had a higher proportion of practices located in highly deprived areas making deprivation a contributing factor.
RESUMO
The essential amino acids (EAA) activate anabolic signalling through mechanisms, which are unclear in detail but include increased signalling through the mammalian target of rapamycin complex 1 (mTORC1). Of all the EAA, the branched chain amino acid (BCAA) leucine has been suggested as the most potent in stimulating protein synthesis, although there have been no studies investigating the effects of each EAA on anabolic signalling pathways. We therefore undertook a systematic analysis of the effect of each EAA on mTORC1 signalling in C2C12 myotubes whereby cells were serum (4 h) and amino acid (1 h) starved before stimulation with 2 mM of each amino acid. Immunoblotting was used to detect phosphorylated forms of protein kinase B (Akt)/mTORC1 signalling enzymes. The phosphorylation of Akt was unchanged by incubation with EAA. Phosphorylation of mTOR and 4E binding protein-1 (4EBP1) were increased 1.67 +/- 0.1-fold and 2.5 +/- 0.1-fold, respectively, in response to leucine stimulation but not in response to any other EAA. The phosphorylation of ribosomal s6 kinase (p70S6K1) was increased by stimulation with all EAA with the exceptions of isoleucine and valine. However, the increase with leucine was significantly greater, 5.9 +/- 0.3-fold compared to 1.6-2.0-fold for the non-BCAA EAA. This pattern of activation was identical in ribosomal protein s6 (RPS6) with the additional effect of leucine being 3.8 +/- 0.3-fold versus 1.5-2.0-fold. Phosphorylation of eukaryotic initiation/elongation factors eIF2alpha and eEF2 were unaffected by EAA. We conclude that leucine is unique amongst the amino acids in its capacity to stimulate both mTOR and 4EBP1 phosphorylation and to enhance p70S6K1 signalling.
Assuntos
Anabolizantes/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Camundongos , Músculo Esquelético/citologiaRESUMO
BACKGROUND: The exploitation of synthetic data in health care is at an early stage. Synthetic data could unlock the potential within health care datasets that are too sensitive for release. Several synthetic data generators have been developed to date; however, studies evaluating their efficacy and generalizability are scarce. OBJECTIVE: This work sets out to understand the difference in performance of supervised machine learning models trained on synthetic data compared with those trained on real data. METHODS: A total of 19 open health datasets were selected for experimental work. Synthetic data were generated using three synthetic data generators that apply classification and regression trees, parametric, and Bayesian network approaches. Real and synthetic data were used (separately) to train five supervised machine learning models: stochastic gradient descent, decision tree, k-nearest neighbors, random forest, and support vector machine. Models were tested only on real data to determine whether a model developed by training on synthetic data can used to accurately classify new, real examples. The impact of statistical disclosure control on model performance was also assessed. RESULTS: A total of 92% of models trained on synthetic data have lower accuracy than those trained on real data. Tree-based models trained on synthetic data have deviations in accuracy from models trained on real data of 0.177 (18%) to 0.193 (19%), while other models have lower deviations of 0.058 (6%) to 0.072 (7%). The winning classifier when trained and tested on real data versus models trained on synthetic data and tested on real data is the same in 26% (5/19) of cases for classification and regression tree and parametric synthetic data and in 21% (4/19) of cases for Bayesian network-generated synthetic data. Tree-based models perform best with real data and are the winning classifier in 95% (18/19) of cases. This is not the case for models trained on synthetic data. When tree-based models are not considered, the winning classifier for real and synthetic data is matched in 74% (14/19), 53% (10/19), and 68% (13/19) of cases for classification and regression tree, parametric, and Bayesian network synthetic data, respectively. Statistical disclosure control methods did not have a notable impact on data utility. CONCLUSIONS: The results of this study are promising with small decreases in accuracy observed in models trained with synthetic data compared with models trained with real data, where both are tested on real data. Such deviations are expected and manageable. Tree-based classifiers have some sensitivity to synthetic data, and the underlying cause requires further investigation. This study highlights the potential of synthetic data and the need for further evaluation of their robustness. Synthetic data must ensure individual privacy and data utility are preserved in order to instill confidence in health care departments when using such data to inform policy decision-making.
RESUMO
BACKGROUND: Despite its known insulin-independent effects, glucagon-like peptide-1 (GLP-1) role in muscle protein turnover has not been explored under fed-state conditions or in the context of older age, when declines in insulin sensitivity and protein anabolism, as well as losses of muscle mass and function, occur. METHODS: Eight older-aged men (71 ± 1 year, mean ± SEM) were studied in a crossover trial. Baseline measures were taken over 3 hr, prior to a 3 hr postprandial insulin (~30 mIU ml-1 ) and glucose (7-7.5 mM) clamp, alongside I.V. infusions of octreotide and Vamin 14 (±infusions of GLP-1). Four muscle biopsies were taken, and muscle protein turnover was quantified via incorporation of 13 C6 phenylalanine and arteriovenous balance kinetics, using mass spectrometry. Leg macro- and microvascular flow was assessed via ultrasound and anabolic signalling by immunoblotting. GLP-1 and insulin were measured by ELISA. RESULTS: GLP-1 augmented muscle protein synthesis (MPS; fasted: 0.058 ± 0.004% hr-1 vs. postprandial: 0.102 ± 0.005% hr-1 , p < 0.01), in comparison with non-GLP-1 trials. Muscle protein breakdown (MPB) was reduced throughout clamp period, while net protein balance across the leg became positive in both groups. Total femoral leg blood flow was unchanged by the clamp; however, muscle microvascular blood flow (MBF) was significantly elevated in both groups, and to a significantly greater extent in the GLP-1 group (MBF: 5 ± 2 vs. 1.9 ± 1 fold change +GLP-1 and -GLP-1, respectively, p < 0.01). Activation of the Akt-mTOR signalling was similar across both trials. CONCLUSION: GLP-1 infusion markedly enhanced postprandial microvascular perfusion and further stimulated muscle protein metabolism, primarily through increased MPS, during a postprandial insulin hyperaminoacidaemic clamp.
Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Músculo Esquelético/metabolismo , Idoso , Feminino , Humanos , MasculinoRESUMO
BACKGROUND: Machine learning techniques, specifically classification algorithms, may be effective to help understand key health, nutritional, and environmental factors associated with cognitive function in aging populations. OBJECTIVE: This study aims to use classification techniques to identify the key patient predictors that are considered most important in the classification of poorer cognitive performance, which is an early risk factor for dementia. METHODS: Data were used from the Trinity-Ulster and Department of Agriculture study, which included detailed information on sociodemographic, clinical, biochemical, nutritional, and lifestyle factors in 5186 older adults recruited from the Republic of Ireland and Northern Ireland, a proportion of whom (987/5186, 19.03%) were followed up 5-7 years later for reassessment. Cognitive function at both time points was assessed using a battery of tests, including the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), with a score <70 classed as poorer cognitive performance. This study trained 3 classifiers-decision trees, Naïve Bayes, and random forests-to classify the RBANS score and to identify key health, nutritional, and environmental predictors of cognitive performance and cognitive decline over the follow-up period. It assessed their performance, taking note of the variables that were deemed important for the optimized classifiers for their computational diagnostics. RESULTS: In the classification of a low RBANS score (<70), our models performed well (F1 score range 0.73-0.93), all highlighting the individual's score from the Timed Up and Go (TUG) test, the age at which the participant stopped education, and whether or not the participant's family reported memory concerns to be of key importance. The classification models performed well in classifying a greater rate of decline in the RBANS score (F1 score range 0.66-0.85), also indicating the TUG score to be of key importance, followed by blood indicators: plasma homocysteine, vitamin B6 biomarker (plasma pyridoxal-5-phosphate), and glycated hemoglobin. CONCLUSIONS: The results suggest that it may be possible for a health care professional to make an initial evaluation, with a high level of confidence, of the potential for cognitive dysfunction using only a few short, noninvasive questions, thus providing a quick, efficient, and noninvasive way to help them decide whether or not a patient requires a full cognitive evaluation. This approach has the potential benefits of making time and cost savings for health service providers and avoiding stress created through unnecessary cognitive assessments in low-risk patients.
RESUMO
We investigated how myofibrillar protein synthesis (MPS) and muscle anabolic signalling were affected by resistance exercise at 20-90% of 1 repetition maximum (1 RM) in two groups (25 each) of post-absorptive, healthy, young (24 +/- 6 years) and old (70 +/- 5 years) men with identical body mass indices (24 +/- 2 kg m(-2)). We hypothesized that, in response to exercise, anabolic signalling molecule phosphorylation and MPS would be modified in a dose-dependant fashion, but to a lesser extent in older men. Vastus lateralis muscle was sampled before, immediately after, and 1, 2 and 4 h post-exercise. MPS was measured by incorporation of [1,2-(13)C] leucine (gas chromatography-combustion-mass spectrometry using plasma [1,2-(13)C]alpha-ketoisocaparoate as surrogate precursor); the phosphorylation of p70 ribosomal S6 kinase (p70s6K) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) was measured using Western analysis with anti-phosphoantibodies. In each group, there was a sigmoidal dose-response relationship between MPS at 1-2 h post-exercise and exercise intensity, which was blunted (P < 0.05) in the older men. At all intensities, MPS fell in both groups to near-basal values by 2-4 h post-exercise. The phosphorylation of p70s6K and 4EBP1 at 60-90% 1 RM was blunted in older men. At 1 h post-exercise at 60-90% 1 RM, p70s6K phosphorylation predicted the rate of MPS at 1-2 h post-exercise in the young but not in the old. The results suggest that in the post-absorptive state: (i) MPS is dose dependant on intensity rising to a plateau at 60-90% 1 RM; (ii) older men show anabolic resistance of signalling and MPS to resistance exercise.
Assuntos
Envelhecimento/fisiologia , Exercício Físico/fisiologia , Proteínas Musculares/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Envelhecimento/patologia , Proteínas de Ciclo Celular , Humanos , Masculino , Fibras Musculares Esqueléticas/classificação , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiologia , Miofibrilas/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Treinamento Resistido , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Adulto JovemRESUMO
BACKGROUND: Oxidative stress and inflammation may contribute to anabolic resistance in response to protein and exercise in older adults. We investigated whether consumption of montmorency cherry concentrate (MCC) increased anabolic sensitivity to protein ingestion and resistance exercise in healthy older men. METHODS: Sixteen healthy older men were randomized to receive MCC (60â¯mL·d-1) or placebo (PLA) for two weeks, after baseline measures in week 1. During week 3, participants consumed 10â¯gâ¯whey protein·d-1 and completed three bouts of unilateral leg resistance exercise (4â¯×â¯8-10 repetitions at 80% 1RM). Participants consumed a bolus (150â¯mL) and weekly (50â¯mL) doses of deuterated water. Body water 2H enrichment was measured in saliva and vastus lateralis biopsies were taken from the non-exercised leg after weeks 1, 2 and 3, and the exercised leg after week 3, to measure tracer incorporation at rest, in response to protein and proteinâ¯+â¯exercise. RESULTS: Myofibrillar protein synthesis increased in response to exerciseâ¯+â¯protein compared to rest (pâ¯<â¯0.05) in both groups, but there was no added effect of supplement (MCC: 1.79⯱â¯0.75 EX vs 1.15⯱â¯0.40 rest; PLA: 2.22⯱â¯0.54 vs 1.21⯱â¯0.18; all %·d-1). Muscle total NFĸB protein was decreased with exercise and protein in MCC (NFĸB: -20.7⯱â¯17.5%) but increased in PLA (NFĸB: 17.8⯱â¯31.3%, pâ¯=â¯0.073). CONCLUSION: Short-term MCC ingestion does not affect the anabolic response to protein and exercise in healthy, relatively active, older men, despite MCC ingestion attenuating expression of proteins involved in the muscle inflammatory response to exercise, which may influence the chronic training response.
Assuntos
Suplementos Nutricionais , Músculo Esquelético/fisiologia , Polifenóis/farmacologia , Prunus avium/química , Treinamento Resistido , Idoso , Deutério , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Miofibrilas/metabolismo , Estresse Oxidativo , Biossíntese de Proteínas , Músculo Quadríceps/patologia , Proteínas do Soro do Leite/administração & dosagemRESUMO
BACKGROUND & AIMS: Impaired anabolic responses to nutrition and exercise contribute to loss of skeletal muscle mass with ageing (sarcopenia). Here, we tested responses of muscle protein synthesis (MPS), in the under represented group of older women, to leucine-enriched essential amino acids (EAA) in comparison to a large bolus of whey protein (WP). METHODS: Twenty-four older women (65 ± 1 y) received (N = 8/group) 1.5 g leucine-enriched EAA supplements (LEAA_1.5), 6 g LEAA (LEAA_6) in comparison to 40 g WP. A primed constant I.V infusion of 13C6-phenylalanine was used to determine MPS at baseline and in response to feeding (FED) and feeding-plus-exercise (FED-EX; 6 × 8 unilateral leg extensions; 75%1-RM). We quantified plasma insulin/AA concentrations, leg femoral blood flow (LBF)/muscle microvascular blood flow (MBF), and anabolic signalling via immunoblotting. RESULTS: Plasma insulineamia and EAAemia were greater and more prolonged with WP than LEAA, although LEAA_6 peaked at similar levels to WP. Neither LEAA or WP modified LBF or MBF. FED increased MPS similarly in the LEAA_1.5, LEAA_6 and WP (P < 0.05) groups over 0-2 h, with MPS significantly higher than basal in the LEAA_6 and WP groups only over 0-4 h. However, FED-EX increased MPS similarly across all the groups from 0 to 4 h (P < 0.05). Only p-p70S6K1 increased with WP at 2 h in FED (P < 0.05), and at 2/4 h in FED-EX (P < 0.05). CONCLUSIONS: In conclusion, LEAA_1.5, despite only providing 0.6 g of leucine, robustly (perhaps maximally) stimulated MPS, with negligible trophic advantage of greater doses of LEAA or even to 40 g WP. Highlighting that composition of EAA, in particular the presence of leucine rather than amount is most crucial for anabolism.
Assuntos
Exercício Físico/fisiologia , Leucina , Músculo Esquelético/efeitos dos fármacos , Proteínas do Soro do Leite , Idoso , Aminoácidos Essenciais/sangue , Suplementos Nutricionais , Feminino , Humanos , Insulina/sangue , Perna (Membro)/irrigação sanguínea , Perna (Membro)/fisiologia , Leucina/administração & dosagem , Leucina/farmacologia , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Proteínas do Soro do Leite/administração & dosagem , Proteínas do Soro do Leite/farmacologiaRESUMO
Postprandial limb blood flow and skeletal muscle microvascular perfusion reduce with aging. Here we tested the impact of providing bolus essential amino acids (EAA) in the presence and absence of the nitric oxide precursor, l-Arginine (ARG), upon skeletal muscle blood flow and anabolism in older men. Healthy young (YOUNG: 19.7 ± 0.5 y, N = 8) and older men (OLD, 70 ± 0.8 y, N = 8) received 15 g EAA or (older only) 15 g EAA +3 g ARG (OLD-ARG, 69.2 ± 1.2 y, N = 8). We quantified responses in muscle protein synthesis (MPS; incorporation of 13C phenylalanine into myofibrillar proteins), leg and muscle microvascular blood flow (Doppler/contrast enhanced ultrasound (CEUS)) and insulin/EAA in response to EEA ± ARG. Plasma EAA increased similarly across groups but argininemia was evident solely in OLD-ARG (â¼320 mmol, 65 min post feed); increases in plasma insulin (to â¼13 IU ml-1) were similar across groups. Increases in femoral flow were evident in YOUNG >2 h after feeding; these effects were blunted in OLD and OLD-ARG. Increases in microvascular blood volume (MBV) occurred only in YOUNG and these effects were isolated to the early postprandial phase (+45% at â¼45 min after feeding) coinciding with detectable arterio-venous differences in EAA reflecting net uptake by muscle. Increases in microvascular flow velocity (MFV) and tissue perfusion (MBV × MFV) occurred (â¼2 h) in YOUNG and OLD-ARG, but not OLD. Postprandial protein accretion was greater in YOUNG than OLD or OLD-ARG; the latter two groups being indistinguishable. Therefore, ARG rescues aspects of muscle perfusion in OLD without impacting anabolic blunting, perhaps due to the "rescue" being beyond the period of active EAA-uptake.
Assuntos
Aminoácidos Essenciais/administração & dosagem , Arginina/administração & dosagem , Suplementos Nutricionais , Proteínas Musculares/metabolismo , Músculo Esquelético/irrigação sanguínea , Fatores Etários , Idoso , Aminoácidos Essenciais/sangue , Arginina/sangue , Índice de Massa Corporal , Força da Mão , Humanos , Insulina/sangue , Masculino , Músculo Esquelético/efeitos dos fármacos , Miofibrilas/metabolismo , Óxido Nítrico/metabolismo , Fenilalanina/administração & dosagem , Fenilalanina/sangue , Período Pós-Prandial , Biossíntese de Proteínas , Fluxo Sanguíneo Regional , Adulto JovemRESUMO
Maximizing anabolic responses to feeding and exercise is crucial for muscle maintenance and adaptation to exercise training. We hypothesized that enriching a protein drink with leucine would improve anabolic responses to resistance exercise (RE: 6 × 8 knee-extension repetitions at 75% of 1-RM) in both young and older adults. Groups (n = 9) of young (24 ± 6 y, BMI 23 ± 2 kg m-2) and older men (70 ± 5 y, BMI 25 ± 2 kg m-2) were randomized to either: (i) RE followed by Slim-Fast Optima (SFO 10 g PRO; 24 g CHO) with 4.2 g of leucine (LEU) or, (ii) RE + SFO with 4.2 g of alanine (ALA; isonitrogenous control). Muscle biopsies were taken before, immediately after, and 1, 2 and 4 h after RE and feeding. Muscle protein synthesis (MPS) was measured by incorporation of [1, 2-13C2] leucine into myofibrillar proteins and the phosphorylation of p70S6K1 by immunoblotting. In young men, both area under the curve (AUC; FSR 0-4 h P < 0.05) and peak FSR (0.11 vs. 0.08%.h.-1; P < 0.05) were greater in the SFO + LEU than in the SFO + ALA group, after RE. Similarly, in older men, AUC analysis revealed that post-exercise anabolic responses were greater in the SFO + LEU than SFO + ALA group, after RE (AUC; FSR 0-4 h P < 0.05). Irrespective of age, increases in p70S6K1 phosphorylation were evident in response to both SFO + LEU and SFO + ALA, although greater with leucine supplementation than alanine (fold-change 2.2 vs. 3.2; P < 0.05), specifically in the older men. We conclude that addition of Leucine to a sub-maximal PRO bolus improves anabolic responses to RE in young and older men.