Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 290(31): 19121-32, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26055719

RESUMO

Untargeted metabolomics has the potential to improve the predictivity of in vitro toxicity models and therefore may aid the replacement of expensive and laborious animal models. Here we describe a long term repeat dose nephrotoxicity study conducted on the human renal proximal tubular epithelial cell line, RPTEC/TERT1, treated with 10 and 35 µmol·liter(-1) of chloroacetaldehyde, a metabolite of the anti-cancer drug ifosfamide. Our study outlines the establishment of an automated and easy to use untargeted metabolomics workflow for HPLC-high resolution mass spectrometry data. Automated data analysis workflows based on open source software (OpenMS, KNIME) enabled a comprehensive and reproducible analysis of the complex and voluminous metabolomics data produced by the profiling approach. Time- and concentration-dependent responses were clearly evident in the metabolomic profiles. To obtain a more comprehensive picture of the mode of action, transcriptomics and proteomics data were also integrated. For toxicity profiling of chloroacetaldehyde, 428 and 317 metabolite features were detectable in positive and negative modes, respectively, after stringent removal of chemical noise and unstable signals. Changes upon treatment were explored using principal component analysis, and statistically significant differences were identified using linear models for microarray assays. The analysis revealed toxic effects only for the treatment with 35 µmol·liter(-1) for 3 and 14 days. The most regulated metabolites were glutathione and metabolites related to the oxidative stress response of the cells. These findings are corroborated by proteomics and transcriptomics data, which show, among other things, an activation of the Nrf2 and ATF4 pathways.


Assuntos
Acetaldeído/análogos & derivados , Antineoplásicos/toxicidade , Néfrons/metabolismo , Acetaldeído/toxicidade , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Metaboloma , Néfrons/efeitos dos fármacos , Software , Espectrometria de Massas em Tandem
2.
Part Fibre Toxicol ; 13(1): 49, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609141

RESUMO

BACKGROUND: The rapidly increasing number of engineered nanoparticles (NPs), and products containing NPs, raises concerns for human exposure and safety. With this increasing, and ever changing, catalogue of NPs it is becoming more difficult to adequately assess the toxic potential of new materials in a timely fashion. It is therefore important to develop methods which can provide high-throughput screening of biological responses. The use of omics technologies, including metabolomics, can play a vital role in this process by providing relatively fast, comprehensive, and cost-effective assessment of cellular responses. These techniques thus provide the opportunity to identify specific toxicity pathways and to generate hypotheses on how to reduce or abolish toxicity. RESULTS: We have used untargeted metabolome analysis to determine differentially expressed metabolites in human lung epithelial cells (A549) exposed to copper oxide nanoparticles (CuO NPs). Toxicity hypotheses were then generated based on the affected pathways, and critically tested using more conventional biochemical and cellular assays. CuO NPs induced regulation of metabolites involved in oxidative stress, hypertonic stress, and apoptosis. The involvement of oxidative stress was clarified more easily than apoptosis, which involved control experiments to confirm specific metabolites that could be used as standard markers for apoptosis; based on this we tentatively propose methylnicotinamide as a generic metabolic marker for apoptosis. CONCLUSIONS: Our findings are well aligned with the current literature on CuO NP toxicity. We thus believe that untargeted metabolomics profiling is a suitable tool for NP toxicity screening and hypothesis generation.


Assuntos
Metabolômica , Nanopartículas Metálicas/toxicidade , Apoptose , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Glutationa Peroxidase/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Interleucina-8/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Estresse Oxidativo , Glutationa Peroxidase GPX1
3.
Nanotoxicology ; 12(7): 766-780, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29933707

RESUMO

The stress metabolome provides a thorough insight into the signals and hence mechanisms of response of organisms. This is an excellent tool to advance the understanding of interactions, especially for substances like nanomaterials (NMs), for which there is an urgent need for alternative methods for hazard assessment. The metabolome of Enchytraeus crypticus was studied for the first time. The case study, CuO NM (and CuCl2) covered exposure along a time frame [0-7-14 days (d)] and two reproduction effect concentrations (EC10 and EC50). High-performance liquid chromatography-mass spectrometry based method (HPLC-MS) was used, with reversed phase (RP) separation and mass spectrometric detection in positive and negative modes. Metabolite profiling of Cu materials yielded 155 and 382 metabolite features in positive and negative modes, respectively, showing an expression related with time, material, and ECx. The number of differentially expressed metabolites (DEMs) decreased with exposure time (14 d) for CuO NM, whereas for CuCl2 EC50 it increased. Overall, almost all DEMs are down-regulated for CuO NM and up-regulated for CuCl2 (both modes). Early effects were mainly related to amino acids and later to lysophospholipids (down-regulation). Furthermore, the underlying mechanisms of CuO NM toxicity (e.g. neurotransmission, nucleic acids generation, cellular energy, and immune defense) differ from CuCl2, where later metabolomic responses are mostly linked to the metabolism of lipids and fewer to amino acids. This study reports a large scale metabolome profiling for E. crypticus and identifies potential markers of Cu materials, which can help to align intelligent testing strategies and safer-by-design materials.


Assuntos
Cobre/toxicidade , Poluentes Ambientais/toxicidade , Metaboloma/efeitos dos fármacos , Nanoestruturas/toxicidade , Oligoquetos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Cobre/química , Poluentes Ambientais/química , Metabolômica , Nanoestruturas/química , Oligoquetos/metabolismo , Reprodução/efeitos dos fármacos , Solo/química
4.
Anal Chim Acta ; 930: 13-22, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27265900

RESUMO

Untargeted metabolomics aims at obtaining quantitative information on the highest possible number of low-molecular biomolecules present in a biological sample. Rather small changes in mass spectrometric spectrum acquisition parameters may have a significant influence on the detectabilities of metabolites in untargeted global-scale studies by means of high-performance liquid chromatography-mass spectrometry (HPLC-MS). Employing whole cell lysates of human renal proximal tubule cells, we present a systematic global-scale study of the influence of mass spectrometric scan parameters and post-acquisition data treatment on the number and intensity of metabolites detectable in whole cell lysates. Ion transmission and ion collection efficiencies in an Orbitrap-based mass spectrometer basically depend on the m/z range scanned, which, ideally, requires different instrument settings for the respective mass ranges investigated. Therefore, we split a full scan range of m/z 50-1000 relevant for metabolites into two separate segments (m/z 50-200 and m/z 200-1,000), allowing an independent tuning of the ion transmission parameters for both mass ranges. Three different implementations, involving either scanning from m/z 50-1000 in a single scan, or scanning from m/z 50-200 and from m/z 200-1000 in two alternating scans, or performing two separate HPLC-MS runs with m/z 50-200 and m/z 200-1000 scan ranges were critically assessed. The detected features were subjected to rigorous background filtering and quality control in order to obtain reliable metabolite features for subsequent differential quantification. The most efficient approach in terms of feature number, which forms the basis for statistical analysis, identification, and for generating biological hypotheses, was the separate analysis of two different mass ranges. This lead to an increase in the number of detectable metabolite features, especially in the higher mass range (m/z greater than 400), by 2.5 (negative mode) to 6-fold (positive mode) as compared to analysis involving a single scan range. The total number of features confidently detectable was 560 in positive ion mode, and 436 in negative ion mode.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos
5.
Toxicol In Vitro ; 30(1 Pt A): 117-27, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25450742

RESUMO

Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 µM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity.


Assuntos
Cisplatino/farmacocinética , Cisplatino/toxicidade , Túbulos Renais Proximais/citologia , Metabolômica , Proteômica , Transcriptoma , Linhagem Celular , Cisplatino/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA