Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0308110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39074127

RESUMO

The imperative shift towards renewable energy sources, driven by environmental concerns and climate change, has cast a spotlight on solar energy as a clean, abundant, and cost-effective solution. To harness its potential, accurate modeling of photovoltaic (PV) systems is crucial. However, this relies on estimating elusive parameters concealed within PV models. This study addresses these challenges through innovative parameter estimation by introducing the logarithmic spiral search and selective mechanism-based arithmetic optimization algorithm (Ls-AOA). Ls-AOA is an improved version of the arithmetic optimization algorithm (AOA). It combines logarithmic search behavior and a selective mechanism to improve exploration capabilities. This makes it easier to obtain accurate parameter extraction. The RTC France solar cell is employed as a benchmark case study in order to ensure consistency and impartiality. A standardized experimental framework integrates Ls-AOA into the parameter tuning process for three PV models: single-diode, double-diode, and three-diode models. The choice of RTC France solar cell underscores its significance in the field, providing a robust evaluation platform for Ls-AOA. Statistical and convergence analyses enable rigorous assessment. Ls-AOA consistently attains low RMSE values, indicating accurate current-voltage characteristic estimation. Smooth convergence behavior reinforces its efficacy. Comparing Ls-AOA to other methods strengthens its superiority in optimizing solar PV model parameters, showing that it has the potential to improve the use of solar energy.


Assuntos
Algoritmos , Energia Solar , Modelos Teóricos
2.
PLoS One ; 19(4): e0296845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635742

RESUMO

Electron cyclotron resonance heating method of Particle-in-Cell code was used to analyze heating phenomena, axial kinetic energy, and self-consistent electric field of confined electron plasma in ELTRAP device by hydrogen and helium background gases. The electromagnetic simulations were performed at a constant power of 3.8 V for different RF drives (0.5 GHz- 8 GHz), as well as for 1 GHz constant frequency at these varying amplitudes (1 V-3.8 V). The impacts of axial and radial temperatures were found maximum at 1.8 V and 5 GHz as compared to other amplitudes and frequencies for both background gases. These effects are higher at varying radio frequencies due to more ionization and secondary electrons production and maximum recorded radial temperature for hydrogen background gas was 170.41 eV. The axial kinetic energy impacts were found more effective in the outer radial part (between 0.03 and 0.04 meters) of the ELTRAP device due to applied VRF through C8 electrode. The self-consistent electric field was found higher for helium background gas at 5 GHz RF than other amplitudes and radio frequencies. The excitation and ionization rates were found to be higher along the radial direction (r-axis) than the axial direction (z-axis) in helium background gas as compared to hydrogen background gas. The current studies are advantageous for nuclear physics applications, beam physics, microelectronics, coherent radiation devices and also in magnetrons.


Assuntos
Ciclotrons , Elétrons , Calefação , Hélio , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA