Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mem Inst Oswaldo Cruz ; 118: e220255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37162062

RESUMO

BACKGROUND: Dengue is a disease caused by dengue virus (DENV-1 through -4). Among the four serotypes, DENV-4 remains the least studied. Acute kidney injury is a potential complication of dengue generally associated with severe dengue infection. OBJECTIVES: The goal of this study was to investigate the alterations caused by experimental dengue infection in the kidney of adult BALB/c mice. METHODS: In this study, BALB/c mice were infected through the intravenous route with a DENV-4 strain, isolated from a human patient. The kidneys of the mice were procured and subject to histopathological and ultrastructural analysis. FINDINGS: The presence of the viral antigen was confirmed through immunohistochemistry. Analysis of tissue sections revealed the presence of inflammatory cell infiltrate throughout the parenchyma. Glomerular enlargement was a common find. Necrosis of tubular cells and haemorrhage were also observed. Analysis of the kidney on a transmission electron microscope allowed a closer look into the necrotic tubular cells, which presented nuclei with condensed chromatin, and loss of cytoplasm. MAIN CONCLUSIONS: Even though the kidney is probably not a primary target of dengue infection in mice, the inoculation of the virus in the blood appears to damage the renal tissue through local inflammation.


Assuntos
Vírus da Dengue , Dengue Grave , Adulto , Humanos , Animais , Camundongos , Rim , Antígenos Virais , Camundongos Endogâmicos BALB C
2.
Mem Inst Oswaldo Cruz ; 113(4): e170208, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29412340

RESUMO

The lack of an experimental animal model for the study of dengue pathogenesis is a limiting factor for the development of vaccines and drugs. In previous studies, our group demonstrated the susceptibility of BALB/c mice to infection by dengue virus (DENV) 1 and 2, and the virus was successfully isolated in several organs. In this study, BALB/c mice were experimentally infected intravenously with DENV-4, and samples of their saliva were collected. Viral RNA extracted from the saliva samples was subjected to qRT-PCR, with a detection limit of 0.002 PFU/mL. The presence of DENV-4 viral RNA was detected in the saliva of two mice, presenting viral titers of 109 RNA/mL. The detection of DENV RNA via saliva sampling is not a common practice in dengue diagnosis, due to the lower detection rates in human patients. However, the results observed in this study seem to indicate that, as in humans, detection rates of DENV RNA in mouse saliva are also low, correlating the infection in both cases. This study reports the first DENV detection in the saliva of BALB/c immunocompetent mice experimentally infected with non-neuroadapted DENV-4.


Assuntos
Vírus da Dengue/isolamento & purificação , Saliva/virologia , Animais , Vírus da Dengue/genética , Modelos Animais de Doenças , Humanos , Hospedeiro Imunocomprometido , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Viral/genética
3.
Anim Reprod ; 21(2): e20230124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021499

RESUMO

In 2015-2016, the Zika virus (ZIKV) caused a major epidemic in the Americas, increasing cases of microcephaly and Guillain-Barré syndrome. During this period, the discovery of ZIKV sexual transmission intensified studies on the impact of this virus on the reproductive organs. For this study, 2-month-old male BALB/c mice were infected with 1.26 x 106 PFU/mL of ZIKV in solution via the intravenous route. After three, seven, and fourteen days post-infection (DPI), blood and testicle samples were obtained to detect ZIKV RNA. The authors observed that the infected animals had slower weight gain than the control group. Viremia occurred only at 3DPI, and the ZIKV RNA was detected in one testis sample at 7DPI. The histopathological analysis of this organ revealed intense disorganization of the seminiferous tubules' structure, inflammatory infiltrate, necrosis, hemorrhage, fluid accumulation, congestion of blood vessels, and reduced sperm count. Ultrastructural analysis showed nuclear changes in tubule cells, activation of interstitial cells, and morphological changes in spermatozoa, in addition to fragmentation and decreased electron density of the genetic material of these cells. Thus, despite causing predominantly asymptomatic infections, ZIKV can cause significant subclinical and transient damage, including to male reproductive organs.

4.
Viruses ; 14(2)2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35215794

RESUMO

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impacted public health and the world economy and fueled a worldwide race to approve therapeutic and prophylactic agents, but so far there are no specific antiviral drugs. Understanding the biology of the virus is the first step in structuring strategies to combat it, and in this context several studies have been conducted with the aim of understanding the replication mechanism of SARS-CoV-2 in vitro systems. In this work, studies using transmission and scanning electron microscopy and 3D electron microscopy modeling were performed with the goal of characterizing the morphogenesis of SARS-CoV-2 in Vero-E6 cells. Several ultrastructural changes were observed-such as syncytia formation, cytoplasmic membrane projections, lipid droplets accumulation, proliferation of double-membrane vesicles derived from the rough endoplasmic reticulum, and alteration of mitochondria. The entry of the virus into cells occurred through endocytosis. Viral particles were observed attached to the cell membrane and in various cellular compartments, and extrusion of viral progeny took place by exocytosis. These findings allow us to infer that Vero-E6 cells are highly susceptible to SARS-CoV-2 infection as described in the literature and their replication cycle is similar to that described with SARS-CoV and MERS-CoV in vitro models.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Microscopia Eletrônica/métodos , SARS-CoV-2/metabolismo , SARS-CoV-2/ultraestrutura , Animais , Linhagem Celular , Chlorocebus aethiops , SARS-CoV-2/química , Células Vero , Internalização do Vírus , Replicação Viral
5.
Pathogens ; 10(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578117

RESUMO

Dengue virus type 2 (DENV-2) is, traditionally, the most studied serotype due to its association with explosive outbreaks and severe cases. In Brazil, almost 20 years after the first introduction in the 1990s, a new lineage (Lineage II) of the DENV-2 Asian/American genotype emerged and caused an epidemic with severe cases and hospitalizations. Severe dengue includes multiple organ failure, and renal involvement can be potentially related to increased mortality. In order to better understand the role of DENV infection in renal injury, here we aimed to investigate the outcomes of infection with two distinct lineages of DENV-2 Asian/American genotype in the kidney of a murine model. BALB/c mice were infected with Lineages I and II and tissues were submitted to histopathology, immunohistochemistry, histomorphometry and ultrastructural analysis. Blood urea nitrogen (BUN) was detected in blood sample accessed by cardiac puncture. A tendency in kidney weight increase was observed in mice infected with both lineages, but urea levels, on average, were increased only in mice infected with Lineage II. The DENV antigen was detected in the tissue of mice infected with Lineage II and morphological changes were similar to those observed in human dengue cases. Furthermore, the parameters such as organ weight, urea levels and morphometric analysis, showed significant differences between the two lineages in the infected BALB/c, which was demonstrated to be a suitable experimental model for dengue pathophysiology studies in kidneys.

6.
Microorganisms ; 9(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34946137

RESUMO

Dengue virus (DENV) infection by one of the four serotypes (DENV-1 to 4) may result in a wide spectrum of clinical manifestations, with unpredictable evolution and organ involvement. Due to its association with severe epidemics and clinical manifestations, DENV-2 has been substantially investigated. In fact, the first emergence of a new lineage of the DENV-2 Asian/American genotype in Brazil (Lineage II) in 2008 was associated with severe cases and increased mortality related to organ involvement. A major challenge for dengue pathogenesis studies has been a suitable animal model, but the use of immune-competent mice, although sometimes controversial, has proven to be useful, as histological observations in infected animals reveal tissue alterations consistent to those observed in dengue human cases. Here, we aimed to investigate the outcomes caused by two distinct lineages of the DENV-2 Asian/American genotype in the lung, heart and skeletal muscle tissues of infected BALB/c mice. Tissues were submitted to histopathology, immunohistochemistry, histomorphometry and transmission electron microscopy (TEM) analysis. The viral genome was detected in heart and skeletal muscle samples. The viral antigen was detected in cardiomyocytes and endothelial cells of heart tissue. Heart and lung tissue samples presented morphological alterations comparable to those seen in dengue human cases. Creatine kinase serum levels were higher in mice infected with both lineages of DENV-2. Additionally, statistically significant differences, concerning alveolar septa thickening and heart weight, were observed between BALB/c mice infected with both DENV-2 lineages, which was demonstrated to be an appropriate experimental model for dengue pathogenesis studies on lung, heart and skeletal muscle tissues.

7.
Sci Rep ; 11(1): 9723, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958631

RESUMO

Dengue (DEN) is the most prevalent arbovirus among humans, and four billion people live at risk of infection. The clinical manifestations of DEN are variable, and the disease may present subclinically or asymptomatically. A quarter of patients develop classical dengue (CD) or severe dengue (SD), which is potentially lethal and involves vascular permeability changes, severe hemorrhage and organ damage. The involvement of the liver is a fairly common feature in DEN, and alterations range from asymptomatic elevation of transaminases to acute liver failure. Since its introduction in Brazil in 1990, two strains of Dengue virus (DENV) serotype 2 (DENV-2) have been detected: Lineage I, which is responsible for an outbreak in 1991, and Lineage II, which caused an epidemic greater than the previous one and had a different epidemiological profile. To date, studies on different strains of the same serotype/genotype and their association with disease severity are scarce. In addition, one of the greatest challenges regarding the study of DEN pathogenesis and the development of drug and vaccine therapies is the absence of an animal model that reproduces the disease as it occurs in humans. The main goals of this study were to assess BALB/c mouse susceptibility experimentally infected by two distinct DENV-2 strains and characterize possible differences in the clinical signs and alterations induced in the liver resulting from those infections. Mice infected by the two DENV-2 lineages gained less weight than uninfected mice; however, their livers were slightly heavier. Increased AST and AST levels were observed in infected mice, and the number of platelets increased in the first 72 h of infection and subsequently decreased. Mice infected with both lineages presented leukocytosis but at different times of infection. The histopathological changes induced by both lineages were similar and comparable to the changes observed in DEN fatal cases. The viral genome was detected in two liver samples. The results demonstrate the susceptibility of BALB/c mice to both DENV-2 lineages and suggest that the changes induced by those strains are similar, although for some parameters, they are manifested at different times of infection.


Assuntos
Vírus da Dengue/patogenicidade , Fígado/virologia , Animais , Temperatura Corporal , Peso Corporal , Vírus da Dengue/classificação , Modelos Animais de Doenças , Imunocompetência , Fígado/fisiopatologia , Testes de Função Hepática , Camundongos , Camundongos Endogâmicos BALB C , Tamanho do Órgão
8.
Mem. Inst. Oswaldo Cruz ; 118: e220255, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1440671

RESUMO

BACKGROUND Dengue is a disease caused by dengue virus (DENV-1 through -4). Among the four serotypes, DENV-4 remains the least studied. Acute kidney injury is a potential complication of dengue generally associated with severe dengue infection. OBJECTIVES The goal of this study was to investigate the alterations caused by experimental dengue infection in the kidney of adult BALB/c mice. METHODS In this study, BALB/c mice were infected through the intravenous route with a DENV-4 strain, isolated from a human patient. The kidneys of the mice were procured and subject to histopathological and ultrastructural analysis. FINDINGS The presence of the viral antigen was confirmed through immunohistochemistry. Analysis of tissue sections revealed the presence of inflammatory cell infiltrate throughout the parenchyma. Glomerular enlargement was a common find. Necrosis of tubular cells and haemorrhage were also observed. Analysis of the kidney on a transmission electron microscope allowed a closer look into the necrotic tubular cells, which presented nuclei with condensed chromatin, and loss of cytoplasm. MAIN CONCLUSIONS Even though the kidney is probably not a primary target of dengue infection in mice, the inoculation of the virus in the blood appears to damage the renal tissue through local inflammation.

16.
Tese em Português | ARCA | ID: arc-27440

RESUMO

Desde sua introdução no território brasileiro, no ano de 1981, o DENV-4 permaneceu ausente do cenário epidemiológico nacional por quase 25 anos, até sua reintrodução em 2010. Esse evento marca a cocirculação dos 4 sorotipos conhecidos no Brasil e embora os mecanismos por trás da patogênese do vírus ainda não sejam completamente compreendidos, a interação entre anticorpos oriundos de infecções heterotípicas é um fator essencial para a evolução de quadros brandos de DEN em quadros hemorrágicos e de choque. A dificuldade no estudo da interação do vírus com o hospedeiro se deve principalmente à ausência de um modelo animal experimental que reproduza adequadamente a infecção por DENV como observada em casos humanos Modelos atuais fazem uso de animais imunodeficientes, vias de inoculação invasivas e inóculos virais neuroadaptados, condições que não apenas dificultam a compreensão da patogênese como também impossibilitam a utilização de tais modelos para testes de candidatos a vacinas e fármacos. O presente estudo tem como objetivo analisar o potencial tropismo do DENV-4 por fígado, pulmão e coração de camundongos da linhagem BALB/c e avaliar as alterações morfológicas e ultraestruturais geradas pelo vírus nestes órgãos. Para tal, camundongos da linhagem imunocompetente BALB/c foram inoculados por via intravenosa com doses não neuroadaptadas de DENV-4 isolado de caso humano. Alterações observadas nos tecidos estudados apresentaram perfil semelhante ao caracterizado em casos humanos de DEN, e a detecção do vírus nos tecidos revelou a susceptibilidade do modelo ao sorotipo.


Assuntos
Tropismo Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA