Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(3): 105, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363385

RESUMO

Colonization of the cyanobacteria in the Bishnupur terracotta temples, one of the heritage sites of West Bengal, India is in an alarming state of deterioration now. Among the cyanobacteria Anabaena sp. (VBCCA 052002) has been isolated from most of the crust samples of terracotta monuments of Bishnupur. The identification was done using micromorphological characters and confirmed by 16S rRNA gene sequencing. The isolated strain produces enormous exopolysaccharides, which are extracted, hydrolyzed, and analyzed by HPLC. We have studied desiccation tolerance in this cyanobacterium and found biosynthesis of trehalose with an increase in durations of desiccation. The in vitro experiment shows that Chlorophyll-a and carotenoid content increase with fourteen days of desiccation, and cellular carbohydrates increase continuously. However, cellular protein decreases with desiccation. To gain insights into the survival strategies and biodeterioration mechanisms of Anabaena sp. in the desiccated conditions of the Bishnupur monuments, the present study focuses on the physiological aspects of the cyanobacteria under controlled in vitro conditions. Our study indicates that in desiccation conditions, trehalose biosynthesis takes place in Anabaena sp. As a result of the excessive sugar and polysaccharide produced, it adheres to the surface of the terracotta structure. The continuous contraction and expansion of these polysaccharides contribute to the biodeterioration of these monuments.


Assuntos
Anabaena , Dessecação , RNA Ribossômico 16S/genética , Trealose/metabolismo , Anabaena/metabolismo , Polissacarídeos/metabolismo
2.
Biofouling ; 40(1): 40-53, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38359904

RESUMO

The Parsurameswara stone monument, built in the seventh century, is one of the oldest stone monuments in Odisha, India. Metagenomic analysis of the biological crust samples collected from the stone monument revealed 17 phyla in the microbiome, with Proteobacteria being the most dominant phylum, followed by cyanobacteria. Eight cyanobacteria were isolated. Lyngbya corticicola was the dominant cyanobacterium in all crust samples and could tolerate six months of desiccation in vitro. With six months of desiccation, chlorophyll-a decreased; however, carotenoid and cellular carbohydrate contents of this organism increased in the desiccated state. Resistance to desiccation, high carotenoid content, and effective trehalose biosynthesis in this cyanobacterium provide a distinct advantage over other microbiomes. Comparative metabolic profiles of the biological crust and L. corticicola show strongly corrosive organic acids such as dichloroacetic acid, which might be responsible for the biocorrosion of stone monuments.


Assuntos
Cianobactérias , Microbiota , Lyngbya , Dessecação , Biofilmes , Cianobactérias/genética , Microbiota/genética , Carotenoides/análise , Carotenoides/metabolismo
3.
ACS Appl Bio Mater ; 7(8): 5609-5621, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39074362

RESUMO

α-Ketoglutaric acid-based supramolecular Zn(II) metallogels in N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvent (i.e., Zn-α-Glu-DMF and Zn-α-Glu-DMSO) were successfully achieved. Zinc(II) acetate salt and α-ketoglutaric acid directed a three-dimensional noncovalent supramolecular network individually entrapped with N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvent to accomplish their respective semisolid flexible metallogel frameworks. The gel features of these synthesized materials were verified by rheological experiments such as amplitude sweep and frequency sweep measurements. The discrete morphological arrangements were analyzed for these metallogel samples through field emission scanning electron microscopic (FESEM) analysis. Highly stacked interconnected blocks of Zn-α-Glu-DMF with hierarchical arrays are found due to the occurrence of diverse noncovalent supramolecular interactions present in the metallogel framework. A distinct spherical shaped microstructure with interconnected hierarchical assembly has been observed for the FESEM pattern of Zn-α-Glu-DMSO. FTIR spectroscopic measurement was carried out to detect some important stretching vibrations of xerogel samples of different metallogels as well as gel-constructing chemical ingredients. A substantial amount of peak shifting of xerogel samples for both metallogels is observed in FTIR analysis, indicating the presence of different noncovalent interactions. ESI-mass analysis portrays a possible metallogel-constructing strategy. The antibacterial potentialities of both metallogels were investigated. These materials exhibited good antimicrobial efficacy toward Gram-positive and Gram-negative bacterial strains (including Escherichia coli, Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, and Salmonella typhimurium). Both synthesized metallogels were successfully implemented to fabricate the photoresponsive semiconducting diode. These materials offer excellent photodiode parameters including an ideality factor and rectification ratio (ON/OFF ratio). Synthesized metallogels are used to successfully fabricate photodiodes with an Al/p-Si/metallogel/Au structure. The ideality factors (η) for Zn-α-Glu-DMF and Zn-α-Glu-DMSO are found as 1.3 and 2.3, respectively, in dark conditions. The rectification ratios for Zn-α-Glu-DMF and Zn-α-Glu-DMSO metallogels are also determined, and these are found as 40 and 10, respectively.


Assuntos
Antibacterianos , Materiais Biocompatíveis , Géis , Teste de Materiais , Testes de Sensibilidade Microbiana , Solventes , Zinco , Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Géis/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Solventes/química , Tamanho da Partícula , Semicondutores , Substâncias Macromoleculares/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA