RESUMO
The distinct response shown by different phenotypes of macrophages and monocytes under various clinical conditions has put the heterogeneity of these cells into focus of investigation for several diseases. Recently, we have described that after engulfing hemoglobin (Hb)-activated platelets, classical monocytes differentiated into pro-inflammatory phenotypes, which were abundant in the circulation of paroxysmal nocturnal hemoglobinuria (PNH) and sickle cell disease patients. Our current study shows that upon engulfment of Hb-activated platelets, monocytes differentiate into M1-macrophages under M1-polarization stimulus (GM-CSF, IFN-γ + LPS). When grown under M2-polarization stimulus (M-CSF, IL-4 + IL13), the cells exhibited an M1-like phenotype, secreted elevated levels of pro-inflammatory cytokines including TNF-α and IL-1ß, and displayed loss of the secretion of cytokine such as IL-10 and also phagocytic ability unlike the conventional M2 macrophages. Interestingly, when differentiated under the above polarization stimulus, monocytes from PNH patients expressed high levels of CD80 and phospho-STAT1, like M1 macrophages. Hemolytic mice also exhibited a gradual increase in monocyte-platelet aggregates in circulation and accumulation of CD80high macrophages in thioglycollate-induced inflamed peritoneum. The spleen of the mice was also populated by CD80high macrophages with compromised phagocytic capacity. Our findings suggest that the hemolytic environment and specifically the Hb-activated platelets, which are abundant in circulation during intravascular hemolysis, closely regulate monocyte differentiation.
Assuntos
Plaquetas/imunologia , Hemoglobinas/metabolismo , Hemoglobinúria Paroxística/patologia , Hemólise/imunologia , Macrófagos/citologia , Monócitos/citologia , Fagocitose/imunologia , Anemia Falciforme/imunologia , Anemia Falciforme/patologia , Animais , Antígeno B7-1/metabolismo , Modelos Animais de Doenças , Hemoglobinúria Paroxística/imunologia , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator de Transcrição STAT1/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Monocytes and macrophage combat infections and maintain homeostatic balance by engulfing microbes and apoptotic cells, and releasing inflammatory cytokines. Studies have described that these cells develop anti-inflammatory properties upon recycling the free-hemoglobin (Hb) in hemolytic conditions. While investigating the phenotype of monocytes in two hemolytic disorders-paroxysmal nocturnal hemoglobinuria (PNH) and sickle cell disease (SCD), we observed a high number of pro-inflammatory (CD14+CD16hi) monocytes in these patients. We further investigated in vitro the phenotype of these monocytes and found an estimated 55% of CD14+ cells were transformed into the CD14+CD16hi subset after engulfing Hb-activated platelets. The CD14+CD16hi monocytes, which were positive for both intracellular Hb and CD42b (platelet marker), secreted significant amounts of TNF-α and IL-1ß, unlike monocytes treated with only free Hb, which secreted more IL-10. We have shown recently the presence of a high number of Hb-bound hyperactive platelets in patients with both diseases, and further investigated if the monocytes engulfed these activated platelets in vivo. As expected, we found 95% of CD14+CD16hi monocytes with both intracellular Hb and CD42b in both diseases, and they expressed high TNF-α. Furthermore our data showed that these monocytes whether from patients or developed in vitro after treatment with Hb-activated platelets, secreted significant amounts of tissue factor. Besides, these CD14+CD16hi monocytes displayed significantly decreased phagocytosis of E. coli. Our study therefore suggests that this alteration of monocyte phenotype may play a role in the increased propensity to pro-inflammatory/coagulant complications observed in these hemolytic disorders-PNH and SCD.
Assuntos
Anemia Falciforme/patologia , Plaquetas/patologia , Hemoglobinas/metabolismo , Hemoglobinúria Paroxística/patologia , Inflamação/patologia , Monócitos/patologia , Anemia Falciforme/metabolismo , Plaquetas/metabolismo , Hemoglobinúria Paroxística/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Monócitos/metabolismo , Fenótipo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Receptores de IgG/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Successful recall Ab responses require recruitment of quiescent memory B cells to secondary lymphoid organs. However, the cellular dynamics of memory cells responding to local antigenic challenge at lymphoid sites distal from the initial Ag encounter are not well understood. We show in this study that memory B cells generated following s.c. immunization in one footpad generate secondary responses to soluble Ag given i.p. but not to Ag given s.c. in the contralateral footpad unless LPS is coadministered. Memory B cells do not express CD62L, and CD62L(-ve) cells cannot enter lymph nodes unless LPS-mediated inflammation is induced there. Functional TLR4 is required on the B cells, as well as on non-B cells, in the lymph node to achieve full recruitment. Furthermore, splenectomized mice fail to respond to such inflammatory s.c. challenge in contralateral footpads, unlike lymphadenectomized mice lacking the original draining lymph nodes. Splenectomized mice also fail to respond to i.p. challenge with soluble Ag. Together, these data indicate that, unlike the central memory pool of T cells, which circulates through resting lymph nodes, the majority of long-lived memory B cells are spleen resident and require inflammatory signals for mounting recall responses at distal challenge sites.
Assuntos
Subpopulações de Linfócitos B/imunologia , Movimento Celular/imunologia , Memória Imunológica/imunologia , Mediadores da Inflamação/administração & dosagem , Mediadores da Inflamação/fisiologia , Linfonodos/imunologia , Animais , Antígenos/administração & dosagem , Antígenos/imunologia , Subpopulações de Linfócitos B/patologia , Relação Dose-Resposta Imunológica , Imunização/métodos , Injeções Intraperitoneais , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/fisiologia , Linfonodos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Baço/imunologia , Baço/patologiaRESUMO
Numerous human pathogens, especially Gram-negative bacteria, are able to enter the viable-but-non-culturable (VBNC) state when they are exposed to environmental stressors and pose the risk of being resuscitated and causing infection after the removal of the trigger. Widely used food preservatives like weak organic acids are potential VBNC inducers in food processing and packaging facilities but have only been reported for food-borne pathogens. In the present study, it is demonstrated for the first time that one such agent, formic acid (FA), can induce a VBNC state at food processing, storage, and distribution temperatures (4, 25, and 37°C) with a varied time of treatment (days 4-10) in pathogenic Gram-negative bacteria Acinetobacter baumannii and Klebsiella pneumoniae. The use of hospital-associated pathogens is critical based on the earlier reports that demonstrated the presence of these bacteria in hospital kitchens and commonly consumed foods. VBNC induction was validated by multiple parameters, e.g., non-culturability, metabolic activity as energy production, respiratory markers, and membrane integrity. Furthermore, it was demonstrated that the removal of FA was able to resuscitate VBNC with an increased expression of multiple virulence and Antimicrobial Resistance (AMR) genes in both pathogens. Since food additives/preservatives are significantly used in most food manufacturing facilities supplying to hospitals, contamination of these packaged foods with pathogenic bacteria and the consequence of exposure to food additives emerge as pertinent issues for infection control, and control of antimicrobial resistance in the hospital setting.
RESUMO
In a recent work, we have described the kinetics among the monocyte subsets in the peripheral blood of hemolytic patients including paroxysmal nocturnal hemoglobinuria (PNH) and sickle cell disease (SCD). After engulfing Hb-activated platelets, classical monocytes (CD14+CD16-) significantly transformed into highly inflammatory (CD14+CD16hi) subsets in vitro. An estimated 40% of total circulating monocytes in PNH and 70% in SCD patients existed as CD14+CD16hi subsets. In this study, we show that the nonclassical (CD14dimCD16+) monocyte subsets are nearly absent in patients with PNH or SCD, compared to 10-12% cells in healthy individuals. In mechanism, we have described the unique role of both free Hb and nitric oxide (NO) in reducing number of nonclassical subsets more than classical monocytes. After engulfing Hb-activated platelets, the monocytes including nonclassical subsets acquired rapid cell death within 12 h in vitro. Further, the treatment to monocytes either with the secretome of Hb-activated platelets containing NO and free Hb or purified free Hb along with GSNO (a physiological NO donor) enhanced rapid cell death. Besides, our data from both PNH and SCD patients exhibited a direct correlation between intracellular NO and cell death marker 7AAD in monocytes from the peripheral blood. Our data together suggest that due to the immune surveillance nature, the nonclassical or patrolling monocytes are encountered frequently by Hb-activated platelets, free Hb, and NO in the circulation of hemolytic patients and are predisposed to die rapidly.
Assuntos
Hemoglobinas/análise , Hemoglobinúria Paroxística/imunologia , Monócitos/citologia , Óxido Nítrico/sangue , Adolescente , Adulto , Apoptose , Biomarcadores/sangue , Feminino , Humanos , Masculino , Adulto JovemRESUMO
To compare immune phenotypes across two geographic and ethnic communities, we examined umbilical cord blood by flow cytometry and Luminex in parallel cohorts of 53 newborns from New Delhi, India, and 46 newborns from Stanford, California. We found that frequencies of a B cell subset suggested to be B-1-like, and serum IgM concentration were both significantly higher in the Stanford cohort, independent of differences in maternal age. While serum IgA levels were also significantly higher in the Stanford cohort, IgG1, IgG2, and IgG4 were significantly higher in the New Delhi samples. We found that neutrophils, plasmacytoid dendritic cells, CD8+ T cells, and total T cells were higher in the U.S. cohort, while dendritic cells, patrolling monocytes (CD14dimCD16+), natural killer cells, CD4+ T cells, and naïve B cells were higher in the India cohort. Within the India cohort, we also identified cell types whose frequency was positively or negatively predictive of occurrence of infection(s) in the first six months of life. Monocytes, total T cells, and memory CD4+ T cells were most prominent in having an inverse relationship with infection. We suggest that these data provide impetus for follow-up studies linking phenotypic differences to environmental versus genetic factors, and to infection outcomes.
Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Monócitos/imunologia , Subpopulações de Linfócitos B/citologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , California , Feminino , Humanos , Memória Imunológica , Índia , Recém-Nascido , Masculino , Monócitos/citologiaRESUMO
The human peripheral leukocyte subset composition depends on genotype variation and pre-natal and post-natal environmental influence diversity. We quantified this composition in adults and neonates, and compared the median values and dispersal ranges of various subsets in them. We confirmed higher frequencies of monocytes and regulatory T cells (Tregs), similar frequencies of neutrophils, and lower frequencies of CD8 T cells, NKT cells, B1 B cells and gamma-delta T cells in neonatal umbilical cord blood. Unlike previous reports, we found higher frequencies of eosinophils and B cells, higher CD4:CD8 ratios, lower frequencies of T cells and iNKT cells, and similar frequencies of CD4 T cells and NK cells in neonates. We characterized monocyte subsets and dendritic cell (DC) subsets in far greater detail than previously reported, using recently described surface markers and gating strategies and observed that neonates had lower frequencies of patrolling monocytes and lower myeloid dendritic cell (mDC):plasmacytoid DC (pDC) ratios. Our data contribute to South Asian reference values for these parameters. We found that dispersal ranges differ between different leukocyte subsets, suggesting differential determination of variation. Further, some subsets were more dispersed in adults than in neonates suggesting influences of postnatal sources of variation, while some show the opposite pattern suggesting influences of developmental process variation. Together, these data and analyses provide interesting biological possibilities for future exploration.
Assuntos
Envelhecimento/imunologia , Subpopulações de Linfócitos T , Adolescente , Adulto , Estudos de Casos e Controles , Estudos Transversais , Feminino , Citometria de Fluxo , Humanos , Recém-Nascido , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: While infections are a major cause of neonatal mortality in India even in full-term neonates, this is an especial problem in the large proportion (~20%) of neonates born underweight (or small-for-gestational-age; SGA). One potential contributory factor for this susceptibility is the possibility that immune system maturation may be affected along with intrauterine growth retardation. METHODS: In order to examine the possibility that differences in immune status may underlie the susceptibility of SGA neonates to infections, we enumerated the frequencies and concentrations of 22 leukocyte subset populations as well as IgM and IgA levels in umbilical cord blood from full-term SGA neonates and compared them with values from normal-weight (or appropriate-for-gestational-age; AGA) full-term neonates. We eliminated most SGA-associated risk factors in the exclusion criteria so as to ensure that AGA-SGA differences, if any, would be more likely to be associated with the underweight status itself. RESULTS: An analysis of 502 such samples, including 50 from SGA neonates, showed that SGA neonates have significantly fewer plasmacytoid dendritic cells (pDCs), a higher myeloid DC (mDC) to pDC ratio, more natural killer (NK) cells, and higher IgM levels in cord blood in comparison with AGA neonates. Other differences were also observed such as tendencies to lower CD4:CD8 ratios and greater prominence of inflammatory monocytes, mDCs and neutrophils, but while some of them had substantial differences, they did not quite reach the standard level of statistical significance. CONCLUSIONS: These differences in cellular lineages of the immune system possibly reflect stress responses in utero associated with growth restriction. Increased susceptibility to infections may thus be linked to complex immune system dysregulation rather than simply retarded immune system maturation.