Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Magn Reson ; 45(12): 1343-1358, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25541571

RESUMO

Spin-label W-band (94 GHz) EPR with a five-loop-four-gap resonator (LGR) was successfully applied to study membrane properties (L. Mainali, J.S. Hyde, W.K. Subczynski, Using spin-label W-band EPR to study membrane fluidity in samples of small volume, J. Magn. Reson. 226 (2013) 35-44). In that study, samples were equilibrated with the selected gas mixture outside the resonator in a sample volume ~100 times larger than the sensitive volume of the LGR and transferred to the resonator in a quartz capillary. A seven-loop-six-gap W-band resonator has been developed. This resonator permits measurements on aqueous samples of 150 nL volume positioned in a polytetrafluoroethylene (PTFE) gas permeable sample tube. Samples can be promptly deoxygenated or equilibrated with an air/nitrogen mixture inside the resonator, which is significant in saturation-recovery measurements and in spin-label oximetry. This approach was tested for lens lipid membranes derived from lipids extracted from two porcine lenses (single donor). Profiles of membrane fluidity and the oxygen transport parameter were obtained from saturation-recovery EPR using phospholipid analog spin-labels. Cholesterol analog spin-labels allowed discrimination of the cholesterol bilayer domain and acquisition of oxygen transport parameter profiles across this domain. Results were compared with those obtained previously for membranes derived from a pool of 100 lenses. Results demonstrate that EPR at W-band can be successfully used to study aqueous biological samples of small volume under controlled oxygen concentration.

2.
Cell Biochem Biophys ; 75(3-4): 259-273, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28555359

RESUMO

A multi-arm W-band (94 GHz) electron paramagnetic resonance spectrometer that incorporates a loop-gap resonator with high bandwidth is described. A goal of the instrumental development is detection of free induction decay following rapid sweep of the microwave frequency across the spectrum of a nitroxide radical at physiological temperature, which is expected to lead to a capability for Fourier transform electron paramagnetic resonance. Progress toward this goal is a theme of the paper. Because of the low Q-value of the loop-gap resonator, it was found necessary to develop a new type of automatic frequency control, which is described in an appendix. Path-length equalization, which is accomplished at the intermediate frequency of 59 GHz, is analyzed. A directional coupler is favored for separation of incident and reflected power between the bridge and the loop-gap resonator. Microwave leakage of this coupler is analyzed. An oversize waveguide with hyperbolic-cosine tapers couples the bridge to the loop-gap resonator, which results in reduced microwave power and signal loss. Benchmark sensitivity data are provided. The most extensive application of the instrument to date has been the measurement of T1 values using pulse saturation recovery. An overview of that work is provided.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Análise de Fourier , Micro-Ondas , Razão Sinal-Ruído
3.
J Magn Reson ; 211(2): 228-33, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21741868

RESUMO

A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented.


Assuntos
Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Algoritmos , Óxidos N-Cíclicos/química , Interpretação Estatística de Dados , Espectroscopia de Ressonância de Spin Eletrônica/estatística & dados numéricos , Indicadores e Reagentes , Óxidos de Nitrogênio/química , Processamento de Sinais Assistido por Computador , Marcadores de Spin
4.
J Magn Reson ; 205(1): 93-101, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20462775

RESUMO

This paper describes a novel experiment on nitroxide radical spin labels using a multiarm EPR W-band bridge with a loop-gap resonator (LGR). We demonstrate EPR spectroscopy of spin labels by linear sweep of the microwave frequency across the spectrum. The high bandwidth of the LGR, about 1 GHz between 3 dB points of the microwave resonance, makes this new experiment possible. A frequency-tunable yttrium iron garnet (YIG) oscillator provides sweep rates as high as 1.8x10(5) GHz/s, which corresponds to 6.3 kT/s in magnetic field-sweep units over a 44 MHz range. Two experimental domains were identified. In the first, linear frequency sweep rates were relatively slow, and pure absorption and pure dispersion spectra were obtained. This appears to be a practical mode of operation at the present level of technological development. The main advantage is the elimination of sinusoidal magnetic field modulation. In the second mode, the frequency is swept rapidly across a portion of the spectrum, and then the frequency sweep is stopped for a readout period; FID signals from a swept line oscillate at a frequency that is the difference between the spectral position of the line in frequency units and the readout position. If there is more than one line, oscillations are superimposed. The sweep rates using the YIG oscillator were too slow, and the portion of the spectrum too narrow to achieve the full EPR equivalent of Fourier transform (FT) NMR. The paper discusses technical advances required to reach this goal. The hypothesis that trapezoidal frequency sweep is an enabling technology for FT EPR is supported by this study.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Algoritmos , Óxidos N-Cíclicos/química , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Análise de Fourier , Indicadores e Reagentes , Micro-Ondas , Óxidos de Nitrogênio/química , Marcadores de Spin , Triacetonamina-N-Oxil/química
5.
J Magn Reson ; 193(2): 297-304, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18547848

RESUMO

A reference arm W-band (94 GHz) microwave bridge with two sample-irradiation arms for saturation recovery (SR) EPR and ELDOR experiments is described. Frequencies in each arm are derived from 2 GHz synthesizers that have a common time-base and are translated to 94 GHz in steps of 33 and 59 GHz. Intended applications are to nitroxide radical spin labels and spin probes in the liquid phase. An enabling technology is the use of a W-band loop-gap resonator (LGR) [J.W. Sidabras, R.R. Mett, W. Froncisz, T.G. Camenisch, J.R. Anderson, J.S. Hyde, Multipurpose EPR loop-gap resonator and cylindrical TE(011) cavity for aqueous samples at 94 GHz, Rev. Sci. Instrum. 78 (2007) 034701]. The high efficiency parameter (8.2 GW(-1/2) with sample) permits the saturating pump pulse level to be just 5 mW or less. Applications of SR EPR and ELDOR to the hydrophilic spin labels 3-carbamoyl-2,2,5,5-tetra-methyl-3-pyrroline-1-yloxyl (CTPO) and 2,2,6,6,-tetramethyl-4-piperidone-1-oxyl (TEMPONE) are described in detail. In the SR ELDOR experiment, nitrogen nuclear relaxation as well as Heisenberg exchange transfer saturation from pumped to observed hyperfine transitions. SR ELDOR was found to be an essential method for measurements of saturation transfer rates for small molecules such as TEMPONE. Free induction decay (FID) signals for small nitroxides at W-band are also reported. Results are compared with multifrequency measurements of T(1e) previously reported for these molecules in the range of 2-35 GHz [J.S. Hyde, J.-J. Yin, W.K. Subczynski, T.G. Camenisch, J.J. Ratke, W. Froncisz, Spin label EPR T(1) values using saturation recovery from 2 to 35 GHz. J. Phys. Chem. B 108 (2004) 9524-9529]. The values of T(1e) decrease at 94 GHz relative to values at 35 GHz.


Assuntos
Fenômenos Eletromagnéticos/instrumentação , Fenômenos Eletromagnéticos/métodos , Espectroscopia de Ressonância de Spin Eletrônica/instrumentação , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Micro-Ondas , Marcadores de Spin , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA