RESUMO
Somatic polyploidization, an adaptation by which cells increase their DNA content to support growth, is observed in many cell types, including cardiomyocytes. Although polyploidization is believed to be beneficial, progression to a polyploid state is often accompanied by loss of proliferative capacity. Recent work suggests that genetics heavily influence cardiomyocyte ploidy. However, the developmental course by which cardiomyocytes reach their final ploidy state has only been investigated in select backgrounds. Here, we assessed cardiomyocyte number, cell cycle activity, and ploidy dynamics across two divergent mouse strains: C57BL/6J and A/J. Both strains are born and reach adulthood with comparable numbers of cardiomyocytes; however, the end composition of ploidy classes and developmental progression to reach the final state differ substantially. We expand on previous findings that identified Tnni3k as a mediator of cardiomyocyte ploidy and uncover a role for Runx1 in ploidy dynamics and cardiomyocyte cell division, in both developmental and injury contexts. These data provide novel insights into the developmental path to cardiomyocyte polyploidization and challenge the paradigm that hypertrophy is the sole mechanism for growth in the postnatal heart.
Assuntos
Miócitos Cardíacos , Ploidias , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Camundongos Endogâmicos C57BL , Poliploidia , Patrimônio Genético , Proteínas Serina-Treonina Quinases/metabolismoRESUMO
BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is an emerging major unmet need and one of the most significant clinic challenges in cardiology. The pathogenesis of HFpEF is associated with multiple risk factors. Hypertension and metabolic disorders associated with obesity are the 2 most prominent comorbidities observed in patients with HFpEF. Although hypertension-induced mechanical overload has long been recognized as a potent contributor to heart failure with reduced ejection fraction, the synergistic interaction between mechanical overload and metabolic disorders in the pathogenesis of HFpEF remains poorly characterized. METHOD: We investigated the functional outcome and the underlying mechanisms from concurrent mechanic and metabolic stresses in the heart by applying transverse aortic constriction in lean C57Bl/6J or obese/diabetic B6.Cg-Lepob/J (ob/ob) mice, followed by single-nuclei RNA-seq and targeted manipulation of a top-ranked signaling pathway differentially affected in the 2 experimental cohorts. RESULTS: In contrast to the post-transverse aortic constriction C57Bl/6J lean mice, which developed pathological features of heart failure with reduced ejection fraction over time, the post-transverse aortic constriction ob/ob mice showed no significant changes in ejection fraction but developed characteristic pathological features of HFpEF, including diastolic dysfunction, worsened cardiac hypertrophy, and pathological remodeling, along with further deterioration of exercise intolerance. Single-nuclei RNA-seq analysis revealed significant transcriptome reprogramming in the cardiomyocytes stressed by both pressure overload and obesity/diabetes, markedly distinct from the cardiomyocytes singularly stressed by pressure overload or obesity/diabetes. Furthermore, glucagon signaling was identified as the top-ranked signaling pathway affected in the cardiomyocytes associated with HFpEF. Treatment with a glucagon receptor antagonist significantly ameliorated the progression of HFpEF-related pathological features in 2 independent preclinical models. Importantly, cardiomyocyte-specific genetic deletion of the glucagon receptor also significantly improved cardiac function in response to pressure overload and metabolic stress. CONCLUSIONS: These findings identify glucagon receptor signaling in cardiomyocytes as a critical determinant of HFpEF progression and provide proof-of-concept support for glucagon receptor antagonism as a potential therapy for the disease.
Assuntos
Insuficiência Cardíaca , Camundongos Endogâmicos C57BL , Volume Sistólico , Animais , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Volume Sistólico/efeitos dos fármacos , Camundongos , Masculino , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/metabolismo , Receptores de Glucagon/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Camundongos Obesos , Função Ventricular Esquerda/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/complicações , Modelos Animais de Doenças , Transdução de SinaisRESUMO
BACKGROUND: Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision. Here we further explored the difference in eye size between D. mauritiana and its sibling species D. simulans. RESULTS: We confirmed that D. mauritiana have rapidly evolved larger eyes as a result of more and wider ommatidia than D. simulans since they recently diverged approximately 240,000 years ago. The functional impact of eye size, and specifically ommatidia size, is often only estimated based on the rigid surface morphology of the compound eye. Therefore, we used 3D synchrotron radiation tomography to measure optical parameters in 3D, predict optical capacity, and compare the modelled vision to in vivo optomotor responses. Our optical models predicted higher contrast sensitivity for D. mauritiana, which we verified by presenting sinusoidal gratings to tethered flies in a flight arena. Similarly, we confirmed the higher spatial acuity predicted for Drosophila simulans with smaller ommatidia and found evidence for higher temporal resolution. CONCLUSIONS: Our study demonstrates that even subtle differences in ommatidia size between closely related Drosophila species can impact the vision of these insects. Therefore, further comparative studies of intra- and interspecific variation in eye morphology and the consequences for vision among other Drosophila species, other dipterans and other insects are needed to better understand compound eye structure-function and how the diversification of eye size, shape, and function has helped insects to adapt to the vast range of ecological niches.
Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila/fisiologia , Drosophila melanogaster/genética , Olho/anatomia & histologia , Especificidade da EspécieRESUMO
Crouzon syndrome is a congenital craniofacial disorder caused by mutations in the Fibroblast Growth Factor Receptor 2 (FGFR2). It is characterized by the premature fusion of cranial sutures, leading to a brachycephalic head shape, and midfacial hypoplasia. The aim of this study was to investigate the effect of the FGFR2 mutation on the microarchitecture of cranial bones at different stages of postnatal skull development, using the FGFR2C342Y mouse model. Apart from craniosynostosis, this model shows cranial bone abnormalities. High-resolution synchrotron microtomography images of the frontal and parietal bone were acquired for both FGFR2C342Y/+ (Crouzon, heterozygous mutant) and FGFR2+/+ (control, wild-type) mice at five ages (postnatal days 1, 3, 7, 14 and 21, n = 6 each). Morphometric measurements were determined for cortical bone porosity: osteocyte lacunae and canals. General linear model to assess the effect of age, anatomical location and genotype was carried out for each morphometric measurement. Histological analysis was performed to validate the findings. In both groups (Crouzon and wild-type), statistical difference in bone volume fraction, average canal volume, lacunar number density, lacunar volume density and canal volume density was found at most age points, with the frontal bone generally showing higher porosity and fewer lacunae. Frontal bone showed differences between the Crouzon and wild-type groups in terms of lacunar morphometry (average lacunar volume, lacunar number density and lacunar volume density) with larger, less dense lacunae around the postnatal age of P7-P14. Histological analysis of bone showed marked differences in frontal bone only. These findings provide a better understanding of the pathogenesis of Crouzon syndrome and will contribute to computational models that predict postoperative changes with the aim to improve surgical outcome.
RESUMO
PURPOSE: This paper presents a hierarchical modeling approach for estimating cardiomyocyte major and minor diameters and intracellular volume fraction (ICV) using diffusion-weighted MRI (DWI) data in ex vivo mouse hearts. METHODS: DWI data were acquired on two healthy controls and two hearts 3 weeks post transverse aortic constriction (TAC) using a bespoke diffusion scheme with multiple diffusion times ( Δ $$ \Delta $$ ), q-shells and diffusion encoding directions. Firstly, a bi-exponential tensor model was fitted separately at each diffusion time to disentangle the dependence on diffusion times from diffusion weightings, that is, b-values. The slow-diffusing component was attributed to the restricted diffusion inside cardiomyocytes. ICV was then extrapolated at Δ = 0 $$ \Delta =0 $$ using linear regression. Secondly, given the secondary and the tertiary diffusion eigenvalue measurements for the slow-diffusing component obtained at different diffusion times, major and minor diameters were estimated assuming a cylinder model with an elliptical cross-section (ECS). High-resolution three-dimensional synchrotron X-ray imaging (SRI) data from the same specimen was utilized to evaluate the biophysical parameters. RESULTS: Estimated parameters using DWI data were (control 1/control 2 vs. TAC 1/TAC 2): major diameter-17.4 µ $$ \mu $$ m/18.0 µ $$ \mu $$ m versus 19.2 µ $$ \mu $$ m/19.0 µ $$ \mu $$ m; minor diameter-10.2 µ $$ \mu $$ m/9.4 µ $$ \mu $$ m versus 12.8 µ $$ \mu $$ m/13.4 µ $$ \mu $$ m; and ICV-62%/62% versus 68%/47%. These findings were consistent with SRI measurements. CONCLUSION: The proposed method allowed for accurate estimation of biophysical parameters suggesting cardiomyocyte diameters as sensitive biomarkers of hypertrophy in the heart.
Assuntos
Estenose da Valva Aórtica , Miócitos Cardíacos , Camundongos , Animais , Imagem de Difusão por Ressonância Magnética/métodos , Cardiomegalia/diagnóstico por imagem , Imageamento TridimensionalRESUMO
Parallel to major changes in fatty acid and glucose metabolism, defect in branched-chain amino acid (BCAA) catabolism has also been recognized as a metabolic hallmark and potential therapeutic target for heart failure. However, BCAA catabolic enzymes are ubiquitously expressed in all cell types and a systemic BCAA catabolic defect is also manifested in metabolic disorder associated with obesity and diabetes. Therefore, it remains to be determined the cell-autonomous impact of BCAA catabolic defect in cardiomyocytes in intact hearts independent from its potential global effects. In this study, we developed two mouse models. One is cardiomyocyte and temporal-specific inactivation of the E1α subunit (BCKDHA-cKO) of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, which blocks BCAA catabolism. Another model is cardiomyocyte specific inactivation of the BCKDH kinase (BCKDK-cKO), which promotes BCAA catabolism by constitutively activating BCKDH activity in adult cardiomyocytes. Functional and molecular characterizations showed E1α inactivation in cardiomyocytes was sufficient to induce loss of cardiac function, systolic chamber dilation and pathological transcriptome reprogramming. On the other hand, inactivation of BCKDK in intact heart does not have an impact on baseline cardiac function or cardiac dysfunction under pressure overload. Our results for the first time established the cardiomyocyte cell autonomous role of BCAA catabolism in cardiac physiology. These mouse lines will serve as valuable model systems to investigate the underlying mechanisms of BCAA catabolic defect induced heart failure and to provide potential insights for BCAA targeted therapy.
Assuntos
Diabetes Mellitus , Insuficiência Cardíaca , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Obesidade/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/uso terapêuticoRESUMO
BACKGROUND: The majority of quantitative genetic models used to map complex traits assume that alleles have similar effects across all individuals. Significant evidence suggests, however, that epistatic interactions modulate the impact of many alleles. Nevertheless, identifying epistatic interactions remains computationally and statistically challenging. In this work, we address some of these challenges by developing a statistical test for polygenic epistasis that determines whether the effect of an allele is altered by the global genetic ancestry proportion from distinct progenitors. RESULTS: We applied our method to data from mice and yeast. For the mice, we observed 49 significant genotype-by-ancestry interaction associations across 14 phenotypes as well as over 1,400 Bonferroni-corrected genotype-by-ancestry interaction associations for mouse gene expression data. For the yeast, we observed 92 significant genotype-by-ancestry interactions across 38 phenotypes. Given this evidence of epistasis, we test for and observe evidence of rapid selection pressure on ancestry specific polymorphisms within one of the cohorts, consistent with epistatic selection. CONCLUSIONS: Unlike our prior work in human populations, we observe widespread evidence of ancestry-modified SNP effects, perhaps reflecting the greater divergence present in crosses using mice and yeast.
Assuntos
Epistasia Genética , Evolução Molecular , Herança Multifatorial/genética , Seleção Genética/genética , Alelos , Animais , Genótipo , Humanos , Camundongos , Modelos Genéticos , Fenótipo , Locos de Características Quantitativas/genética , Saccharomyces cerevisiae/genéticaRESUMO
Animals vary widely in body size within and across species. This has consequences for the function of organs and body parts in both large and small individuals. How these scale, in relation to body size, reveals evolutionary investment strategies, often resulting in trade-offs between functions. Eyes exemplify these trade-offs, as they are limited by their absolute size in two key performance features: sensitivity and spatial acuity. Due to their size polymorphism, insect compound eyes are ideal models for studying the allometric scaling of eye performance. Previous work on apposition compound eyes revealed that allometric scaling led to poorer spatial resolution and visual sensitivity in small individuals, across a range of insect species. Here, we used X-ray microtomography to investigate allometric scaling in superposition compound eyes-the second most common eye type in insects-for the first time. Our results reveal a novel strategy to cope with the trade-off between sensitivity and spatial acuity, as we show that the eyes of the hummingbird hawkmoth retain an optimal balance between these performance measures across all body sizes.
Assuntos
Olho , Mariposas , Animais , Tamanho Corporal , Olho/anatomia & histologia , InsetosRESUMO
Full-field transmission X-ray microscopy (TXM) is a very potent high-resolution X-ray imaging technique. However, it is challenging to achieve fast acquisitions because of the limited efficiency of the optics. Using a broader energy bandwidth, for example using a multilayer monochromator, directly increases the flux in the experiment. The advantage of more counts needs to be weighed against a deterioration in achievable resolution because focusing optics show chromatic aberrations. This study presents theoretical considerations of how much the resolution is affected by an increase in bandwidth as well as measurements at different energy bandwidths (ΔE/E = 0.013%, 0.27%, 0.63%) and the impact on achievable resolution. It is shown that using a multilayer monochromator instead of a classical silicon double-crystal monochromator can increase the flux by an order of magnitude with only a limited effect on the resolution.
RESUMO
Cardiovascular diseases are the leading cause of death worldwide. Complex diseases with highly heterogenous disease progression among patient populations, cardiovascular diseases feature multifactorial contributions from both genetic and environmental stressors. Despite significant effort utilizing multiple approaches from molecular biology to genome-wide association studies, the genetic landscape of cardiovascular diseases, particularly for the nonfamilial forms of heart failure, is still poorly understood. In the past decade, systems-level approaches based on omics technologies have become an important approach for the study of complex traits in large populations. These advances create opportunities to integrate genetic variation with other biological layers to identify and prioritize candidate genes, understand pathogenic pathways, and elucidate gene-gene and gene-environment interactions. In this review, we will highlight some of the recent progress made using systems genetics approaches to uncover novel mechanisms and molecular bases of cardiovascular pathophysiological manifestations. The key technology and data analysis platforms necessary to implement systems genetics will be described, and the current major challenges and future directions will also be discussed. For complex cardiovascular diseases, such as heart failure, systems genetics represents a powerful strategy to obtain mechanistic insights and to develop individualized diagnostic and therapeutic regiments, paving the way for precision cardiovascular medicine.
Assuntos
Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Cardiopatias/genética , Biologia de Sistemas/métodos , Animais , Predisposição Genética para Doença , HumanosRESUMO
Studies of the structural and functional role of chromosomes in cytogenetics have spanned more than 10 decades. In this work, we take advantage of the coherent X-rays available at the latest synchrotron sources to extract the individual masses of all 46 chromosomes of metaphase human B and T cells using hard X-ray ptychography. We have produced 'X-ray karyotypes' of both heavy metal-stained and unstained spreads to determine the gain or loss of genetic material upon low-level X-ray irradiation doses due to radiation damage. The experiments were performed at the I-13 beamline, Diamond Light Source, Didcot, UK, using the phase-sensitive X-ray ptychography method.
Assuntos
Cromossomos Humanos , Síncrotrons , Humanos , Cariotipagem , Raios XRESUMO
BACKGROUND: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising tool for disease modeling and drug development. However, hiPSC-CMs remain functionally immature, which hinders their utility as a model of human cardiomyocytes. OBJECTIVE: To improve the electrophysiological maturation of hiPSC-CMs. METHODS AND RESULTS: On day 16 of cardiac differentiation, hiPSC-CMs were treated with 100 nmol/L triiodothyronine (T3) and 1 µmol/L Dexamethasone (Dex) or vehicle for 14 days. On day 30, vehicle- and T3 + Dex-treated hiPSC-CMs were dissociated and replated either as cell sheets or single cells. Optical mapping and patch-clamp technique were used to examine the electrophysiological properties of vehicle- and T3 + Dex-treated hiPSC-CMs. Compared to vehicle, T3 + Dex-treated hiPSC-CMs had a slower spontaneous beating rate, more hyperpolarized resting membrane potential, faster maximal upstroke velocity, and shorter action potential duration. Changes in spontaneous activity and action potential were mediated by decreased hyperpolarization-activated current (If) and increased inward rectifier potassium currents (IK1), sodium currents (INa), and the rapidly and slowly activating delayed rectifier potassium currents (IKr and IKs, respectively). Furthermore, T3 + Dex-treated hiPSC-CM cell sheets (hiPSC-CCSs) exhibited a faster conduction velocity and shorter action potential duration than the vehicle. Inhibition of IK1 by 100 µM BaCl2 significantly slowed conduction velocity and prolonged action potential duration in T3 + Dex-treated hiPSC-CCSs but had no effect in the vehicle group, demonstrating the importance of IK1 for conduction velocity and action potential duration. CONCLUSION: T3 + Dex treatment is an effective approach to rapidly enhance electrophysiological maturation of hiPSC-CMs.
Assuntos
Dexametasona/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/fisiologia , Canais de Potássio/genética , Tri-Iodotironina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio/metabolismo , Análise de Célula ÚnicaRESUMO
Osteogenesis imperfecta (OI or brittle bone disease) is a group of genetic disorders of the connective tissues caused mainly by mutations in the genes encoding collagen type I. Clinical manifestations of OI include skeletal fragility, bone deformities, and severe functional disabilities, such as hearing loss. Progressive hearing loss, usually beginning in childhood, affects approximately 70% of people with OI with more than half of the cases involving the inner ear. There is no cure for OI nor a treatment to ameliorate its corresponding hearing loss, and very little is known about the properties of OI ears. In this study, we investigate the morphology of the otic capsule and the cochlea in the inner ear of the oim mouse model of OI. High-resolution 3D images of 8-week old oim and WT inner ears were acquired using synchrotron microtomography. Volumetric morphometric measurements were conducted for the otic capsule, its intracortical canal network and osteocyte lacunae, and for the cochlear spiral ducts. Our results show that the morphology of the cochlea is preserved in the oim ears at 8 weeks of age but the otic capsule has a greater cortical thickness and altered intracortical bone porosity, with a larger number and volume density of highly branched canals in the oim otic capsule. These results portray a state of compromised bone quality in the otic capsule of the oim mice that may contribute to their hearing loss.
Assuntos
Orelha Interna/diagnóstico por imagem , Orelha Interna/fisiopatologia , Osteogênese Imperfeita/fisiopatologia , Animais , Densidade Óssea , Cóclea/diagnóstico por imagem , Cóclea/fisiopatologia , Modelos Animais de Doenças , Tomografia com Microscopia Eletrônica/métodos , Ósteon/diagnóstico por imagem , Ósteon/fisiopatologia , Masculino , Camundongos Mutantes , Osteogênese Imperfeita/etiologia , SíncrotronsRESUMO
Heart failure (HF) patients with deteriorating right ventricular (RV) structure and function have a nearly twofold increased risk of death compared with those without. Despite the well-established clinical risk, few studies have examined the molecular signature associated with this HF condition. The purpose of this study was to integrate morphological, molecular, and functional data with the transcriptome data set in the RV of a preclinical model of cardiometabolic HF. Ossabaw swine were fed either normal diet without surgery (lean control, n = 5) or Western diet and aortic-banding (WD-AB; n = 4). Postmortem RV weight was increased and positively correlated with lung weight in the WD-AB group compared with CON. Total RNA-seq was performed and gene expression profiles were compared and analyzed using principal component analysis, weighted gene co-expression network analysis, module enrichment analysis, and ingenuity pathway analysis. Gene networks specifically associated with RV hypertrophic remodeling identified a hub gene in MAPK8 (or JNK1) that was associated with the selective induction of the extracellular matrix (ECM) component fibronectin. JNK1 and fibronectin protein were increased in the right coronary artery (RCA) of WD-AB animals and associated with a decrease in matrix metalloproteinase 14 protein, which specifically degrades fibronectin. RCA fibronectin content was correlated with increased vascular stiffness evident as a decreased elastin elastic modulus in WD-AB animals. In conclusion, this study establishes a molecular and transcriptome signature in the RV using Ossabaw swine with cardiometabolic HF. This signature was associated with altered ECM regulation and increased vascular stiffness in the RCA, with selective dysregulation of fibronectin.
Assuntos
Vasos Coronários/metabolismo , Perfilação da Expressão Gênica/métodos , Insuficiência Cardíaca/genética , Miocárdio/metabolismo , Transcriptoma , Remodelação Ventricular/genética , Animais , Dieta Ocidental , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Humanos , RNA-Seq/métodos , Transdução de Sinais/genética , SuínosRESUMO
X-ray ptychography and X-ray fluorescence are complementary nanoscale imaging techniques, providing structural and elemental information, respectively. Both methods acquire data by scanning a localized beam across the sample. X-ray ptychography processes the transmission signal of a coherent illumination interacting with the sample, to produce images with a resolution finer than the illumination spot and step size. By enlarging both the spot and the step size, the technique can cover extended regions efficiently. X-ray fluorescence records the emitted spectra as the sample is scanned through the localized beam and its spatial resolution is limited by the spot and step size. The requisites for fast ptychography and high-resolution fluorescence appear incompatible. Here, a novel scheme that mitigates the difference in requirements is proposed. The method makes use of two probes of different sizes at the sample, generated by using two different energies for the probes and chromatic focusing optics. The different probe sizes allow to reduce the number of acquisition steps for the joint fluorescence-ptychography scan compared with a standard single beam scan, while imaging the same field of view. The new method is demonstrated experimentally using two undulator harmonics, a Fresnel zone plate and an energy discriminating photon counting detector.
Assuntos
Imagem Óptica , Fótons , Radiografia , Raios XRESUMO
The human cell nucleus serves as an important organelle holding the genetic blueprint for life. In this work, X-ray ptychography was applied to assess the masses of human cell nuclei using its unique phase shift information. Measurements were carried out at the I13-1 beamline at the Diamond Light Source that has extremely large transverse coherence properties. The ptychographic diffractive imaging approach allowed imaging of large structures that gave quantitative measurements of the phase shift in 2D projections. In this paper a modified ptychography algorithm that improves the quality of the reconstruction for weak scattering samples is presented. The application of this approach to calculate the mass of several human nuclei is also demonstrated.
Assuntos
Núcleo Celular/ultraestrutura , Microscopia de Contraste de Fase/métodos , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Síncrotrons , Difração de Raios X , Raios XRESUMO
A correction in the paper by Seiboth et al. [(2018). J. Synchrotron Rad. 25, 108-115] is made.
RESUMO
X-ray ptychography has revolutionized nanoscale phase contrast imaging at large-scale synchrotron sources in recent years. We present here the first successful demonstration of the technique in a small-scale laboratory setting. An experiment was conducted with a liquid metal-jet x-ray source and a single photon-counting detector with a high spectral resolution. The experiment used a spot size of 5 µm to produce a ptychographic phase image of a Siemens star test pattern with a submicron spatial resolution. The result and methodology presented show how high-resolution phase contrast imaging can now be performed at small-scale laboratory sources worldwide.
RESUMO
We present a dynamic implementation of the beam-tracking x-ray imaging method providing absorption, phase, and ultrasmall angle scattering signals with microscopic resolution and high frame rate. We demonstrate the method's ability to capture dynamic processes with 22-ms time resolution by investigating the melting of metals in laser additive manufacturing, which has so far been limited to single-modality synchrotron radiography. The simultaneous availability of three contrast channels enables earlier segmentation of droplets, tracking of powder dynamic, and estimation of unfused powder amounts, demonstrating that the method can provide additional information on melting processes.
RESUMO
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are pivotal regulators of extracellular matrix (ECM) composition and could, due to their dynamic activity, function as prognostic tools for fibrosis and cardiac function in left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF). We conducted a systematic review on experimental animal models of LVDD and HFpEF published in MEDLINE or Embase. Twenty-three studies were included with a total of 36 comparisons that reported established LVDD, quantification of cardiac fibrosis and cardiac MMP or TIMP expression or activity. LVDD/HFpEF models were divided based on underlying pathology: hemodynamic overload (17 comparisons), metabolic alteration (16 comparisons) or ageing (3 comparisons). Meta-analysis showed that echocardiographic parameters were not consistently altered in LVDD/HFpEF with invasive hemodynamic measurements better representing LVDD. Increased myocardial fibrotic area indicated comparable characteristics between hemodynamic and metabolic models. Regarding MMPs and TIMPs; MMP2 and MMP9 activity and protein and TIMP1 protein levels were mainly enhanced in hemodynamic models. In most cases only mRNA was assessed and there were no correlations between cardiac tissue and plasma levels. Female gender, a known risk factor for LVDD and HFpEF, was underrepresented. Novel studies should detail relevant model characteristics and focus on MMP and TIMP protein expression and activity to identify predictive circulating markers in cardiac ECM remodeling.