Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 443(7113): 818-22, 2006 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17051209

RESUMO

The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagellum, leading to the diversification of terrestrial fungi. Here we develop phylogenetic hypotheses for Fungi using data from six gene regions and nearly 200 species. Our results indicate that there may have been at least four independent losses of the flagellum in the kingdom Fungi. These losses of swimming spores coincided with the evolution of new mechanisms of spore dispersal, such as aerial dispersal in mycelial groups and polar tube eversion in the microsporidia (unicellular forms that lack mitochondria). The enigmatic microsporidia seem to be derived from an endoparasitic chytrid ancestor similar to Rozella allomycis, on the earliest diverging branch of the fungal phylogenetic tree.


Assuntos
Evolução Molecular , Fungos/genética , Genes Fúngicos/genética , Filogenia , Quitridiomicetos/classificação , Quitridiomicetos/genética , Fungos/classificação , Microsporídios/classificação , Microsporídios/genética
2.
Syst Biol ; 58(2): 224-39, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20525580

RESUMO

We present a 6-gene, 420-species maximum-likelihood phylogeny of Ascomycota, the largest phylum of Fungi. This analysis is the most taxonomically complete to date with species sampled from all 15 currently circumscribed classes. A number of superclass-level nodes that have previously evaded resolution and were unnamed in classifications of the Fungi are resolved for the first time. Based on the 6-gene phylogeny we conducted a phylogenetic informativeness analysis of all 6 genes and a series of ancestral character state reconstructions that focused on morphology of sporocarps, ascus dehiscence, and evolution of nutritional modes and ecologies. A gene-by-gene assessment of phylogenetic informativeness yielded higher levels of informativeness for protein genes (RPB1, RPB2, and TEF1) as compared with the ribosomal genes, which have been the standard bearer in fungal systematics. Our reconstruction of sporocarp characters is consistent with 2 origins for multicellular sexual reproductive structures in Ascomycota, once in the common ancestor of Pezizomycotina and once in the common ancestor of Neolectomycetes. This first report of dual origins of ascomycete sporocarps highlights the complicated nature of assessing homology of morphological traits across Fungi. Furthermore, ancestral reconstruction supports an open sporocarp with an exposed hymenium (apothecium) as the primitive morphology for Pezizomycotina with multiple derivations of the partially (perithecia) or completely enclosed (cleistothecia) sporocarps. Ascus dehiscence is most informative at the class level within Pezizomycotina with most superclass nodes reconstructed equivocally. Character-state reconstructions support a terrestrial, saprobic ecology as ancestral. In contrast to previous studies, these analyses support multiple origins of lichenization events with the loss of lichenization as less frequent and limited to terminal, closely related species.


Assuntos
Ascomicetos/genética , Filogenia , Ascomicetos/classificação , Ascomicetos/citologia , Ecossistema , Genes Fúngicos , Reprodução
3.
Mycologia ; 98(6): 1088-103, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17486983

RESUMO

The Lecanoromycetes includes most of the lichen-forming fungal species (> 13500) and is therefore one of the most diverse class of all Fungi in terms of phenotypic complexity. We report phylogenetic relationships within the Lecanoromycetes resulting from Bayesian and maximum likelihood analyses with complementary posterior probabilities and bootstrap support values based on three combined multilocus datasets using a supermatrix approach. Nine of 10 orders and 43 of 64 families currently recognized in Eriksson's classification of the Lecanoromycetes (Outline of Ascomycota--2006 Myconet 12:1-82) were represented in this sampling. Our analyses strongly support the Acarosporomycetidae and Ostropomycetidae as monophyletic, whereas the delimitation of the largest subclass, the Lecanoromycetidae, remains uncertain. Independent of future delimitation of the Lecanoromycetidae, the Rhizocarpaceae and Umbilicariaceae should be elevated to the ordinal level. This study shows that recent classifications include several nonmonophyletic taxa at different ranks that need to be recircumscribed. Our phylogenies confirm that ascus morphology cannot be applied consistently to shape the classification of lichen-forming fungi. The increasing amount of missing data associated with the progressive addition of taxa resulted in some cases in the expected loss of support, but we also observed an improvement in statistical support for many internodes. We conclude that a phylogenetic synthesis for a chosen taxonomic group should include a comprehensive assessment of phylogenetic confidence based on multiple estimates using different methods and on a progressive taxon sampling with an increasing number of taxa, even if it involves an increasing amount of missing data.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Evolução Molecular , Filogenia , Análise por Conglomerados , Biologia Computacional , DNA Fúngico/genética , DNA Mitocondrial/genética , DNA Ribossômico/genética , RNA Polimerase II/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Homologia de Sequência
4.
Mycologia ; 98(6): 1018-28, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17486977

RESUMO

Pezizomycotina is the largest subphylum of Ascomycota and includes the vast majority of filamentous, ascoma-producing species. Here we report the results from weighted parsimony, maximum likelihood and Bayesian phylogenetic analyses of five nuclear loci (SSU rDNA, LSU rDNA, RPB1, RPB2 and EF-lalpha) from 191 taxa. Nine of the 10 Pezizomycotina classes currently recognized were represented in the sampling. These data strongly supported the monophyly of Pezizomycotina, Arthoniomycetes, Eurotiomycetes, Orbiliomycetes and Sordariomycetes. Pezizomycetes and Dothideomycetes also were resolved as monophyletic but not strongly supported by the data. Lecanoromycetes was resolved as paraphyletic in parsimony analyses but monophyletic in maximum likelihood and Bayesian analyses. Leotiomycetes was polyphyletic due to exclusion of Geoglossaceae. The two most basal classes of Pezizomycotina were Orbiliomycetes and Pezizomycetes, both of which comprise species that produce apothecial ascomata. The seven remaining classes formed a monophyletic group that corresponds to Leotiomyceta. Within Leotiomyceta, the supraclass clades of Leotiomycetes s.s. plus Sordariomycetes and Arthoniomycetes plus Dothideomycetes were resolved with moderate support.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Filogenia , Ascomicetos/ultraestrutura , Análise por Conglomerados , Biologia Computacional , DNA Fúngico/genética , DNA Ribossômico/genética , Microscopia Eletrônica de Varredura , Fator 1 de Elongação de Peptídeos/genética , RNA Polimerase II/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA