Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Exp Immunol ; 188(3): 437-443, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28213939

RESUMO

The prevalence of serum antibodies against Clostridium difficile (CD) toxins A and B in healthy populations have prompted interest in evaluating the therapeutic activity of intravenous immunoglobulin (IVIg) in individuals experiencing severe or recurrent C. difficile infection (CDI). Despite some promising case reports, a definitive clinical role for IVIg in CDI remains unclear. Contradictory results may be attributed to a lack of consensus regarding optimal dose, timing of administration and patient selection as well as variability in specific antibody content between commercial preparations. The purpose of this study was to investigate retrospectively the efficacy of three commercial preparations of IVIg for treating severe or recurrent CDI. In subsequent mechanistic studies using protein microarray and toxin neutralization assays, all IVIg preparations were analysed for specific binding and neutralizing antibodies (NAb) to CD antigens in vitro and the presence of anti-toxin NAbs in vivo following IVIg infusion. A therapeutic response to IVIg was observed in 41% (10 of 17) of the CDI patients. Significant variability in multi-isotype specific antibodies to a 7-plex panel of CD antigens and toxin neutralization efficacies were observed between IVIg preparations and also in patient sera before and after IVIg administration. These results extend our current understanding of population immunity to CD and support the inclusion of surface layer proteins and binary toxin antigens in CD vaccines. Future strategies could enhance IVIg treatment response rates by using protein microarray to preselect donor plasma/serum with the highest levels of anti-CD antibodies and/or anti-toxin neutralizing capacities prior to fractionation.


Assuntos
Anticorpos Antibacterianos/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Toxinas Bacterianas/imunologia , Enterocolite Pseudomembranosa/terapia , Imunoglobulinas Intravenosas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Células CACO-2 , Clostridioides difficile , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Reino Unido
2.
Gene ; 399(1): 81-90, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17597310

RESUMO

Angiotensin-converting enzyme (ACE) is a metallopeptidase that converts angiotensin I into angiotensin II. ACE is crucial in the control of cardiovascular and renal homeostasis and fertility in mammals. In vertebrates, both transmembrane and soluble ACE, containing one or two active sites, have been characterized. So far, only soluble, single domain ACEs from invertebrates have been cloned, and these have been implicated in reproduction in insects. Furthermore, an ACE-related carboxypeptidase was recently characterized in Leishmania, a unicellular eukaryote, suggesting the existence of ACE in more distant organisms. Interestingly, in silico databank analysis revealed that bacterial DNA sequences could encode putative ACE-like proteins, strikingly similar to vertebrates' enzymes. To gain more insight into the bacterial enzymes, we cloned the putative ACE from the phytopathogenic bacterium, Xanthomonas axonopodis pv. citri, named XcACE. The 2 kb open reading frame encodes a 672-amino-acid soluble protein containing a single active site. In vitro expression and biochemical characterization revealed that XcACE is a functional 72 kDa dipeptidyl-carboxypeptidase. As in mammals, this metalloprotease hydrolyses angiotensin I into angiotensin II. XcACE is sensitive to ACE inhibitors and chloride ions concentration. Variations in the active site residues, highlighted by structural modelling, can account for the different substrate selectivity and inhibition profile compared to human ACE. XcACE characterization demonstrates that ACE is an ancestral enzyme, provoking questions about its appearance and structure/activity specialisation during the course of evolution.


Assuntos
Proteínas de Bactérias/química , Peptidil Dipeptidase A/química , Xanthomonas axonopodis/enzimologia , Sequência de Aminoácidos , Angiotensina I/química , Angiotensina II/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Proteínas de Bactérias/genética , Clonagem Molecular , Biologia Computacional , Genoma Bacteriano/genética , Dados de Sequência Molecular , Peptidil Dipeptidase A/classificação , Peptidil Dipeptidase A/genética , Filogenia , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Xanthomonas axonopodis/genética
3.
J Mol Biol ; 359(1): 76-85, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16616187

RESUMO

The development of blood vessels (angiogenesis) is critical throughout embryogenesis and in some normal postnatal physiological processes. Pathological angiogenesis has a pivotal role in sustaining tumour growth and chronic inflammation. Vascular endothelial growth factor-B (VEGF-B) is a member of the VEGF family of growth factors that regulate blood vessel and lymphatic angiogenesis. VEGF-B is closely related to VEGF-A and placenta growth factor (PlGF), but unlike VEGF-A, which binds to two receptor tyrosine kinases VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1/KDR), VEGF-B and PlGF bind to VEGFR-1 and not VEGFR-2. There is growing evidence of a role for VEGF-B in physiological and pathological blood vessel angiogenesis. VEGF-B may provide novel therapeutic strategies for the treatment of vascular disease and be a potential therapeutic target in aberrant vessel formation. To help understand at the molecular level the differential receptor binding profile of the VEGF family of growth factors we have determined the crystal structure of human VEGF-B(10-108) at 2.48 Angstroms resolution. The overall structure is very similar to that of the previously determined cysteine-knot motif growth factors: VEGF-A, PlGF and platelet-derived growth factor-B (PDGF-B). We also present a predicted model for the association of VEGF-B with the second domain of its receptor, VEGFR-1. Based on this interaction and the present structural data of the native protein, we have identified several putative residues that could play an important role in receptor recognition and specificity.


Assuntos
Aminoácidos , Estrutura Terciária de Proteína , Fator B de Crescimento do Endotélio Vascular/química , Fator B de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/química , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Alinhamento de Sequência , Fator B de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Sci Rep ; 5: 13397, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26324071

RESUMO

The botulinum neurotoxin type D is one of seven highly potent toxins produced by Clostridium botulinum which inhibit neurotransmission at cholinergic nerve terminals. A functional fragment derived from the toxin, LHn, consisting of the catalytic and translocation domains, has been heralded as a platform for the development of targeted secretion inhibitors. These secretion inhibitors are aimed at retargeting the toxin towards a specific cell type to inhibit vesicular secretion. Here we report crystal structures of LHn from serotype D at 2.3 Å, and that of SXN101959 at 3.1 Å resolution. SXN101959, a derivative that combines LHn from serotype D with a fragment of the growth hormone releasing hormone, has previously revealed promising results in inhibiting growth hormone release in pituitary somatotrophs. These structures offer for the first time insights into the translocation domain interaction with the catalytic domain in serotype D. Furthermore, structural information from small-angle X-ray scattering of LHn/D is compared among serotypes A, B, and D. Taken together, these results demonstrate the robustness of the 'LHn fold' across serotypes and its use in engineering additional polypeptide components with added functionality. Our study demonstrates the suitability of botulinum neurotoxin, and serotype D in particular, as a basis for engineering novel secretion inhibitors.


Assuntos
Toxinas Botulínicas/química , Clostridium botulinum/metabolismo , Animais , Toxinas Botulínicas/genética , Toxinas Botulínicas/metabolismo , Células CHO , Clostridium botulinum/classificação , Cricetinae , Cricetulus , Cristalografia por Raios X , Humanos , Estrutura Terciária de Proteína , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento a Baixo Ângulo , Sorogrupo , Difração de Raios X
5.
J Cell Commun Signal ; 3(1): 25-41, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19424823

RESUMO

The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA