Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Inhal Toxicol ; 22(8): 627-47, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20540622

RESUMO

Increasing attention has been placed on inhalation dosimetry in children because of children's greater air intake rate and unique windows of vulnerability for various toxicants and health outcomes. However, risk assessments have not incorporated this information because dosimetric adjustments have focused upon extrapolation across species rather than across age groups within the human population. The objectives of this study were to synthesize information regarding child/adult intake and dosimetry differences for particles and gases for potential application to risk assessment. Data and models gathered at a 2006 workshop and more recent studies were reviewed to better understand lung development and inhaled dose in children. The results show that child/adult differences exist both on a chemical intake basis and on a deposited or systemic dose basis. These differences can persist for several years and are not captured by standard intraspecies uncertainty factors or by USEPA's reference concentration (RfC) methodology. Options for incorporating children's inhalation exposures into human risk assessments include (1) 3-fold default air intake adjustment for the first 3 years of life with a reduced factor for older children; (2) superseding this default via simplified dosimetry models akin to USEPA's RfC methodology modified for children; (3) utilizing more sophisticated models with better anatomical and air flow descriptions; (4) running these models with input distributions to reflect interchild variability; (5) developing more advanced approaches involving imaging techniques and computational fluid dynamic (CFD) models. These options will enable children's inhaled dose to have a quantitative role in risk assessment that has been lacking and will establish a basis for ongoing research.


Assuntos
Política de Saúde , Exposição por Inalação/efeitos adversos , Xenobióticos/administração & dosagem , Xenobióticos/toxicidade , Envelhecimento , Poluentes Atmosféricos/farmacocinética , Poluentes Atmosféricos/toxicidade , Algoritmos , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Humanos , Lactente , Recém-Nascido , Fenômenos Fisiológicos Respiratórios , Medição de Risco/métodos , Estados Unidos , United States Environmental Protection Agency , Xenobióticos/farmacocinética
2.
Neuromuscul Disord ; 17(4): 285-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17336067

RESUMO

Mutations in the gene encoding fukutin related protein (FKRP) produce a spectrum of disease including congenital muscular dystrophy and limb girdle muscular dystrophy. FKRP is one member of a class of molecules thought to be glycosyltransferases that mediate O-linked glycosylation. The primary target of these glycosyltransferases is thought to be dystroglycan. We now report two unrelated Mexican children with congenital muscular dystrophy who each have the identical, novel 1387A>G, N463D mutation. Muscle biopsies from these children show a reduction of alpha-dystroglycan and also show reduction of beta-dystroglycan, and alpha-, beta-, and gamma-sarcoglycan, suggesting that FKRP mutations can perturb membrane associated proteins beyond dystroglycan.


Assuntos
Distrofina/metabolismo , Glicoproteínas/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mutação/genética , Proteínas/genética , Asparagina/genética , Ácido Aspártico/genética , Pré-Escolar , Feminino , Humanos , Distrofias Musculares/patologia , Pentosiltransferases
4.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-21267918

RESUMO

ObjectiveTo determine the extent to which family physicians closed their doors altogether or for in-person visits during the pandemic, their future practice intentions, and related factors. MethodsBetween March and June 2021, we conducted a cross-sectional survey using email, fax, and phone of 1,186 family doctors practicing comprehensive family medicine in Toronto, Ontario. We asked about practice patterns in January 2021, use of virtual care, and practice intentions. ResultsOf the 1,016 (86%) that responded to the survey, 99.7% (1001/1004) indicated their practice was open in January 2021 with 94.8% (928/979) seeing patients in-person and 30.8% (264/856) providing in-person care to patients reporting COVID-19 symptoms. Respondents estimated spending 58.2% of clinical care time on phone visits and an additional 5.8% on video and 7.5% on email. 17.2% (77/447) were planning to close their current practice in the next five years. There was a higher proportion of physicians who worked alone in a clinic among those who did not see patients in-person (27.6% no vs 12.4% yes, p<0.05), did not see symptomatic patients (15.6% no vs 6.5 % yes, p<0.001), and those who planned to close their practice in the next 5 years (28.9% yes vs 13.9% no, p<0.01). InterpretationThe vast majority of family physicians in Toronto were open to in-person care in January 2021 but almost one-fifth are considering closing their practice in the next five years. Policy-makers need to prepare for a growing family physician shortage and better understand factors that support recruitment and retention.

5.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-20159905

RESUMO

The SARS-CoV-2 Spike protein acquired a D614G mutation early in the COVID-19 pandemic that appears to confer on the virus greater infectivity and is now the globally dominant form of the virus. Certain of the current vaccines entering phase 3 trials are based on the original D614 form of Spike with the goal of eliciting protective neutralizing antibodies. To determine whether D614G mediates neutralization-escape that could compromise vaccine efficacy, sera from Spike-immunized mice, nonhuman primates and humans were evaluated for neutralization of pseudoviruses bearing either D614 or G614 Spike on their surface. In all cases, the G614 pseudovirus was moderately more susceptible to neutralization. The G614 pseudovirus also was more susceptible to neutralization by monoclonal antibodies against the receptor binding domain and by convalescent sera from people known to be infected with either the D614 or G614 form of the virus. These results indicate that a gain in infectivity provided by D614G came at the cost of making the virus more vulnerable to neutralizing antibodies, and that the mutation is not expected to be an obstacle for current vaccine development.

6.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-21264873

RESUMO

The strong humoral immune response produced against the SARS-CoV-2 nucleocapsid (N) and spike (S) proteins has underpinned serological testing but the prevalence of antibody responses to other SARS-CoV-2 proteins, which may be of use as further serological markers, is still unclear. Cell-based serological screening platforms can fulfil a crucial niche in the identification of antibodies which recognise more complex folded epitopes or those incorporating post-translation modifications which may be undetectable by other methods used to investigate the antigenicity of the SARS-CoV-2 proteome. Here, we employed automated high content immunofluorescence microscopy (AHCIM) to assess the viability of such an approach as a method capable of assaying humoral immune responses against full length SARS-CoV-2 proteins in their native cellular state. We first demonstrate that AHCIM provides high sensitivity and specificity in the detection of SARS-CoV-2 N and S IgG. Assessing the prevalence of antibody responses to the SARS-CoV-2 structural membrane protein (M), we further find that 85% of COVID-19 patients within our sample set developed detectable M IgG responses (M sensitivity 85%, N sensitivity 93%, combined N + M sensitivity 95%). The identification of M as a serological marker of high prevalence may be of value in detecting additional COVID-19 cases during the era of mass SARS-CoV-2 vaccinations, where serological screening for SARS CoV-2 infections in vaccinated individuals is dependent on detection of antibodies against N. These findings highlight the advantages of using cell-based systems as serological screening platforms and raise the possibility of using M as a widespread serological marker alongside N and S.

7.
Preprint em Inglês | PREPRINT-BIORXIV | ID: ppbiorxiv-438904

RESUMO

We identify amino acid variants within dominant SARS-CoV-2 T-cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T-cells assessed by IFN-{gamma} and cytotoxic killing assays. These data demonstrate the potential for T-cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T-cell as well as humoral immunity.

8.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-21260151

RESUMO

BackgroundWe aimed to measure SARS-CoV-2 seroprevalence in a cohort of healthcare workers (HCWs) during the first UK wave of the COVID-19 pandemic, explore risk factors associated with infection, and investigate the impact of antibody titres on assay sensitivity. MethodsHCWs at Sheffield Teaching Hospitals NHS Foundation Trust (STH) were prospectively enrolled and sampled at two time points. SARS-CoV-2 antibodies were tested using an in-house assay for IgG and IgA reactivity against Spike and Nucleoprotein (sensitivity 99{middle dot}47%, specificity 99{middle dot}56%). Data were analysed using three statistical models: a seroprevalence model, an antibody kinetics model, and a heterogeneous sensitivity model. FindingsAs of 12th June 2020, 24{middle dot}4% (n=311/1275) HCWs were seropositive. Of these, 39{middle dot}2% (n=122/311) were asymptomatic. The highest adjusted seroprevalence was measured in HCWs on the Acute Medical Unit (41{middle dot}1%, 95% CrI 30{middle dot}0-52{middle dot}9) and in Physiotherapists and Occupational Therapists (39{middle dot}2%, 95% CrI 24{middle dot}4-56{middle dot}5). Older age groups showed overall higher median antibody titres. Further modelling suggests that, for a serological assay with an overall sensitivity of 80%, antibody titres may be markedly affected by differences in age, with sensitivity estimates of 89% in those over 60 years but 61% in those [≤]30 years. InterpretationHCWs in acute medical units working closely with COVID-19 patients were at highest risk of infection, though whether these are infections acquired from patients or other staff is unknown. Current serological assays may underestimate seroprevalence in younger age groups if validated using sera from older and/or more symptomatic individuals. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed for studies published up to March 6th 2021, using the terms "COVID", "SARS-CoV-2", "seroprevalence", and "healthcare workers", and in addition for articles of antibody titres in different age groups against coronaviruses using "coronavirus", "SARS-CoV-2, "antibody", "antibody tires", "COVID" and "age". We included studies that used serology to estimate prevalence in healthcare workers. SARS-CoV-2 seroprevalence has been shown to be greater in healthcare workers working on acute medical units or within domestic services. Antibody levels against seasonal coronaviruses, SARS-CoV and SARS-CoV-2 were found to be higher in older adults, and patients who were hospitalised. Added value of this studyIn this healthcare worker seroprevalence modelling study at a large NHS foundation trust, we confirm that those working on acute medical units, COVID-19 "Red Zones" and within domestic services are most likely to be seropositive. Furthermore, we show that physiotherapists and occupational therapists have an increased risk of COVID-19 infection. We also confirm that antibody titres are greater in older individuals, even in the context of non-hospitalised cases. Importantly, we demonstrate that this can result in age-specific sensitivity in serological assays, where lower antibody titres in younger individuals results in lower assay sensitivity. Implications of all the available evidenceThere are distinct occupational roles and locations in hospitals where the risk of COVID-19 infection to healthcare workers is greatest, and this knowledge should be used to prioritise infection prevention control and other measures to protect healthcare workers. Serological assays may have different sensitivity profiles across different age groups, especially if assay validation was undertaken using samples from older and/or hospitalised patients, who tend to have higher antibody titres. Future seroprevalence studies should consider adjusting for age-specific assay sensitivities to estimate true seroprevalence rates. Author Contributions O_TBL View this table: org.highwire.dtl.DTLVardef@77acb4org.highwire.dtl.DTLVardef@eb9b35org.highwire.dtl.DTLVardef@1af298org.highwire.dtl.DTLVardef@12cf3e1org.highwire.dtl.DTLVardef@3f6476_HPS_FORMAT_FIGEXP M_TBL C_TBL

9.
Preprint em Inglês | PREPRINT-BIORXIV | ID: ppbiorxiv-181867

RESUMO

We have developed periscope, a tool for the detection and quantification of sub-genomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "sub-genomic RNAs". sgRNAs are produced through discontinuous transcription which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L which is located in the 5 UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5 end of all sgRNA. We applied periscope to 1,155 SARS-CoV-2 genomes from Sheffield, UK and validated our findings using orthogonal datasets and in vitro cell systems. Using a simple local alignment to detect reads which contain the leader sequence we were able to identify and quantify reads arising from canonical and non-canonical sgRNA. We were able to detect all canonical sgRNAs at expected abundances, with the exception of ORF10. A number of recurrent non-canonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing datasets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.

10.
Preprint em Inglês | PREPRINT-MEDRXIV | ID: ppmedrxiv-22275865

RESUMO

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARSCoV2. However, the maintenance of such responses, and hence protection from disease, requires careful characterisation. In a large prospective study of UK healthcare workers (Protective immunity from T cells in Healthcare workers (PITCH), within the larger SARSCoV2 immunity and reinfection evaluation (SIREN) study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. We make three observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and memory B cell responses were maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels, broadened neutralising activity against variants of concern including omicron BA.1, BA.2 and BA.5, and boosted T cell responses above the 6 month level post dose 2. Thirdly, prior infection maintained its impact driving larger as well as broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. In conclusion, broadly cross-reactive T cell responses are well maintained over time, especially in those with combined vaccine and infection-induced immunity (hybrid immunity), and may contribute to continued protection against severe disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA