Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt B): 113269, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35427594

RESUMO

Black carbon (BC) is a product of incomplete combustion, present in urban aerosols and sourcing mainly from road traffic. Epidemiological evidence reports positive associations between BC and cardiovascular and respiratory disease. Despite this, BC is currently not regulated by the EU Air Quality Directive, and as a result BC data are not available in urban areas from reference air quality monitoring networks in many countries. To fill this gap, a machine learning approach is proposed to develop a BC proxy using air pollution datasets as an input. The proposed BC proxy is based on two machine learning models, support vector regression (SVR) and random forest (RF), using observations of particle mass and number concentrations (N), gaseous pollutants and meteorological variables as the input. Experimental data were collected from a reference station in Barcelona (Spain) over a 2-year period (2018-2019). Two months of additional data were available from a second urban site in Barcelona, for model validation. BC concentrations estimated by SVR showed a high degree of correlation with the measured BC concentrations (R2 = 0.828) with a relatively low error (RMSE = 0.48 µg/m3). Model performance was dependent on seasonality and time of the day, due to the influence of new particle formation events. When validated at the second station, performance indicators decreased (R2 = 0.633; RMSE = 1.19 µg/m3) due to the lack of N data and PM2.5 and the smaller size of the dataset (2 months). New particle formation events critically impacted model performance, suggesting that its application would be optimal in environments where traffic is the main source of ultrafine particles. Due to its flexibility, it is concluded that the model can act as a BC proxy, even based on EU-regulatory air quality parameters only, to complement experimental measurements for exposure assessment in urban areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Carbono , Monitoramento Ambiental , Dinâmica não Linear , Material Particulado/análise , Fuligem/análise
2.
Environ Res ; 167: 314-328, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30092454

RESUMO

Millions of people use rail subway public transport around the world, despite the relatively high particulate matter (PM) concentrations in these underground environments, requiring the identification and quantification of the aerosol source contributions to improve the air quality. An extensive aerosol monitoring campaign was carried out in eleven subway stations in the Barcelona metro system, belonging to seven subway lines. PM2.5 samples were collected during the metro operating hours and chemically analysed to determine major and trace elements, inorganic ions, and total carbon. The chemical compositions of subway components such as brake pads, rail tracks and pantographs were also determined. The mean PM2.5 concentrations varied widely among stations, ranging from 26 µg m-3 to 86 µg m-3. Subway PM2.5 was mainly constituted by Fe2O3 (30-66%), followed by carbonaceous matter (18-37%) for the old stations, while for new stations equipped with Platform Screen Doors (PSD) these percentages go down to 21-44% and 15-30%, respectively. Both the absolute concentrations and the relative abundance of key species differed for each subway station, although with common patterns within a given subway line. This is a result of the different emission chemical profiles in different subway lines (using diverse types of brakes and/or pantographs). The co-emission of different sources poses a problem for their separation by receptor models. Nevertheless, receptor modelling (Positive Matrix Factorization) was applied resulting in ten sources, five of them subway-specific: RailWheel, RailWheel+Brake, Brake_A, Brake_B, Pb. The sum of their contributions accounted for 43-91% of bulk PM2.5 for the old stations and 21-52% for the stations with PSD. The decrease of the activity during the weekends resulted in a decrease (up to 56%) in the subway-specific sources contribution to the -already lower- bulk PM2.5 concentrations compared to weekdays. The health-related elements are mainly apportioned (> 60%) by subway sources.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Ferrovias , Tamanho da Partícula , Espanha
3.
Med Intensiva ; 41(9): 532-538, 2017 Dec.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-28396047

RESUMO

OBJECTIVE: To determine the predictive value of the Shock Index and Modified Shock Index in patients with massive bleeding due to severe trauma. DESIGN: Retrospective cohort. SETTING: Severe trauma patient's initial attention at the intensive care unit of a tertiary hospital. SUBJECTS: Patients older than 14 years that were admitted to the hospital with severe trauma (Injury Severity Score >15) form January 2014 to December 2015. VARIABLES: We studied the sensitivity (Se), specificity (Sp), positive and negative predictive value (PV+ and PV-), positive and negative likelihood ratio (LR+ and LR-), ROC curves (Receiver Operating Characteristics) and the area under the same (AUROC) for prediction of massive hemorrhage. RESULTS: 287 patients were included, 76.31% (219) were male, mean age was 43,36 (±17.71) years and ISS was 26 (interquartile range [IQR]: 21-34). The overall frequency of massive bleeding was 8.71% (25). For Shock Index: AUROC was 0.89 (95% confidence intervals [CI] 0.84 to 0.94), with an optimal cutoff at 1.11, Se was 91.3% (95% CI: 73.2 to 97.58) and Sp was 79.69% (95% CI: 74.34 to 84.16). For the Modified Shock Index: AUROC was 0.90 (95% CI: 0.86 to 0.95), with an optimal cutoff at 1.46, Se was 95.65% (95% CI: 79.01 to 99.23) and Sp was 75.78% (95% CI: 70.18 to 80.62). CONCLUSION: Shock Index and Modified Shock Index are good predictors of massive bleeding and could be easily incorporated to the initial workup of patients with severe trauma.


Assuntos
Escala de Gravidade do Ferimento , Choque Hemorrágico/diagnóstico , Adulto , Área Sob a Curva , Transfusão de Sangue , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Tempo de Internação/estatística & dados numéricos , Funções Verossimilhança , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade , Choque Hemorrágico/etiologia , Choque Hemorrágico/terapia , Centros de Atenção Terciária/estatística & dados numéricos , Centros de Traumatologia/estatística & dados numéricos
4.
Faraday Discuss ; 189: 337-59, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27119273

RESUMO

Source contributions of organic aerosol (OA) are still not fully understood, especially in terms of quantitative distinction between secondary OA formed from anthropogenic precursors vs. that formed from natural precursors. In order to investigate the OA origin, a field campaign was carried out in Barcelona in summer 2013, including two periods characterized by low and high traffic conditions. Volatile organic compound (VOC) concentrations were higher during the second period, especially aromatic hydrocarbons related to traffic emissions, which showed a marked daily cycle peaking during traffic rush hours, similarly to black carbon (BC) concentrations. Biogenic VOC (BVOC) concentrations showed only minor changes from the low to the high traffic period, and their intra-day variability was related to temperature and solar radiation cycles, although a decrease was observed for monoterpenes during the day. The organic carbon (OC) concentrations increased from the first to the second period, and the fraction of non-fossil OC as determined by (14)C analysis increased from 43% to 54% of the total OC. The combination of (14)C analysis and Aerosol Chemical Speciation Monitor (ACSM) OA source apportionment showed that the fossil OC was mainly secondary (>70%) except for the last sample, when the fossil secondary OC only represented 51% of the total fossil OC. The fraction of non-fossil secondary OC increased from 37% of total secondary OC for the first sample to 60% for the last sample. This enhanced formation of non-fossil secondary OA (SOA) could be attributed to the reaction of BVOC precursors with NOx emitted from road traffic (or from its nocturnal derivative nitrate that enhances night-time semi-volatile oxygenated OA (SV-OOA)), since NO2 concentrations increased from 19 to 42 µg m(-3) from the first to the last sample.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Combustíveis Fósseis/análise , Aerossóis/química , Radioisótopos de Carbono/química , Cidades , Cromatografia Gasosa-Espectrometria de Massas , Material Particulado/análise , Estações do Ano , Fuligem/química , Espectrofotometria Atômica , Luz Solar , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
5.
Environ Sci Technol ; 50(18): 9816-24, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27508898

RESUMO

This study reports spatial and temporal variability of Zn and Cu isotopes in atmospheric particulate matter (PM) collected in two major European cities with contrasting atmospheric pollution, Barcelona and London. We demonstrate that nontraditional stable isotopes identify source contributions of Zn and Cu and can play a major role in future air quality studies. In Barcelona, samples of fine PM were collected at street level at sites with variable traffic density. The isotopic signatures ranged between -0.13 ± 0.09 and -0.51 ± 0.05‰ for δ(66)ZnIRMM and between +0.04 ± 0.20 and +0.33 ± 0.15‰ for δ(65)CuAE633. Copper isotope signatures similar to those of Cu sulfides and Cu/Sb ratios within the range typically found in brake wear suggest that nonexhaust emissions from vehicles are dominant. Negative Zn isotopic signatures characteristic for gaseous emissions from smelting and combustion and large enrichments of Zn and Cd suggest contribution from metallurgical industries. In London, samples of coarse PM collected on the top of a building over 18 months display isotope signatures ranging between +0.03 ± 0.04 and +0.49 ± 0.02‰ for δ(66)ZnIRMM and between +0.37 ± 0.17 and +0.97 ± 0.21‰ for δ(65)CuAE633. Heavy Cu isotope signatures (up to +0.97 ± 0.21‰) and higher enrichments and Cu/Sb ratios during winter time indicate important contribution from fossil fuel combustion. The positive δ(66)ZnIRMM signatures are in good agreement with signatures characteristic for ore concentrates used for the production of tires and galvanized materials, suggesting nonexhaust emissions from vehicles as the main source of Zn pollution.


Assuntos
Material Particulado , Zinco , Poluentes Atmosféricos , Cidades , Cobre , Monitoramento Ambiental
6.
Med Intensiva ; 39(3): 179-88, 2015 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-25449666

RESUMO

The management of critical trauma disease (CTD) has always trends the trends in military war experiences. These conflicts have historically revolutionized clinical concepts, clinical practice guidelines and medical devices, and have marked future lines of research and aspects of training and learning in severe trauma care. Moreover, in the civil setting, the development of intensive care, technological advances and the testing of our healthcare systems in the management of multiple victims, hasve also led to a need for innovation in our trauma care systems.


Assuntos
Medicina de Desastres/tendências , Terapias em Estudo , Traumatologia/tendências , Ferimentos e Lesões/terapia , Oclusão com Balão/instrumentação , Cuidados Críticos/métodos , Cuidados Críticos/tendências , Gerenciamento Clínico , Hidratação , Parada Cardíaca/terapia , Técnicas Hemostáticas/instrumentação , Humanos , Infusões Intraósseas/instrumentação , Incidentes com Feridos em Massa , Medicina Militar , Equipe de Assistência ao Paciente , Simulação de Paciente , Ressuscitação/métodos , Toracotomia , Tromboelastografia
7.
Environ Int ; 192: 109021, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39312840

RESUMO

The recycling of e-waste can lead to the release of organic chemicals when materials containing additives are subjected to dismantling and grinding. In this context, the exposure of workers from a Catalonian e-waste facility to flame retardants and plasticizers (including organophosphate esters (OPEs), polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs) and dechloranes) was assessed using T-shirts and wristbands as passive samplers. The study area includes an area exclusively dedicated to cathodic ray-tube (CRT) TVs dismantling, and a grinding area where the rest of e-waste is ground. All the families of compounds were detected in both T-shirts and wristbands, with the highest concentration levels corresponding to OPEs, followed by PBDEs, NBFRs, and dechloranes. The CRT area presented higher concentration levels than the grinding area. The compounds with higher concentrations in T-shirts were 2-ethylhexyl diphenyl phosphate (EHDPP), diphenyl cresyl phosphate (DCP) and triphenyl phosphate (TPHP), and the total concentration of all groups ranged between 293 and 8324 ng/dm2-h (hour). In the case of the wristbands, the most abundant compounds were DCP, TPHP, and BDE-209, with total concentrations between 188 and 2248 ng/dm2-h. The two sampling methods appear to be complementary, as T-shirts collect coarser particles, while wristbands also capture volatile compounds. Based on normalized surface and time concentrations, the estimated daily intake (EDI) through dermal contact was calculated and carcinogenic and non-carcinogenic risks (CR and non-CR) associated with this activity assessed. The results show median CR 29 and 16 times below the threshold in CRT and grinding areas respectively. The non-CR medians were 2 and 3 times below the threshold, although in the CRT area one exceptional value surpassed the threshold, suggesting that risk can exist for some workers in the facility.

8.
Environ Int ; 184: 108441, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241832

RESUMO

For a Positive Matrix Factorization (PMF) aerosol source apportionment (SA) studies there is no standard procedure to select the most appropriate chemical components to be included in the input dataset for a given site typology, nor specific recommendations in this direction. However, these choices are crucial for the final SA outputs not only in terms of number of sources identified but also, and consequently, in the source contributions estimates. In fact, PMF tends to reproduce most of PM mass measured independently and introduced as a total variable in the input data, regardless of the percentage of PM mass which has been chemically characterized, so that the lack of some specific source tracers (e.g. levoglucosan) can potentially affect the results of the whole source apportionment study. The present study elaborates further on the same concept, evaluating quantitatively the impact of lacking specific sources' tracers on the whole source apportionment, both in terms of identified sources and source contributions. This work aims to provide first recommendations on the most suitable and critical components to be included in PMF analyses in order to reduce PMF output uncertainty as much as possible, and better represent the most commons PM sources observed in many sites in Western countries. To this aim, we performed three sensitivity analyses on three different datasets across EU, including extended sets of organic tracers, in order to cover different types of urban conditions (Mediterranean, Continental, and Alpine), source types, and PM fractions. Our findings reveal that the vehicle exhaust source resulted to be less sensitive to the choice of analytes, although source contributions estimates can deviate significantly up to 44 %. On the other hand, for the detection of the non-exhaust one is clearly necessary to analyze specific inorganic elements. The choice of not analysing non-polar organics likely causes the loss of separation of exhaust and non-exhaust factors, thus obtaining a unique road traffic source, which provokes a significant bias of total contribution. Levoglucosan was, in most cases, crucial to identify biomass burning contributions in Milan and in Barcelona, in spite of the presence of PAHs in Barcelona, while for the case of Grenoble, even discarding levoglucosan, the presence of PAHs allowed identifying the BB factor. Modifying the rest of analytes provoke a systematic underestimation of biomass burning source contributions. SIA factors resulted to be generally overestimated with respect to the base case analysis, also in the case that ions were not included in the PMF analysis. Trace elements were crucial to identify shipping emissions (V and Ni) and industrial sources (Pb, Ni, Br, Zn, Mn, Cd and As). When changing the rest of input variables, the uncertainty was narrow for shipping but large for industrial processes. Major and trace elements were also crucial to identify the mineral/soil factor at all cities. Biogenic SOA and Anthropogenic SOA factors were sensitive to the presence of their molecular tracers, since the availability of OC alone is unable to separate a SOA factor. Arabitol and sorbitol were crucial to detecting fungal spores while odd number of higher alkanes (C27 to C31) for plant debris.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Poluentes Atmosféricos/análise , Material Particulado/análise , Oligoelementos/análise , Incerteza , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Aerossóis/análise
9.
Sci Total Environ ; 857(Pt 2): 159386, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36240941

RESUMO

Ambient particulate matter (PM) is a major contributor to air pollution, leading to adverse health effects on the human population. It has been suggested that the oxidative potential (OP, as a tracer of oxidative stress) of PM is a possible determinant of its health impact. In this study, samples of PM10, PM2.5, and PM1 were collected roughly every four days from January 2018 until March 2019 at a Barcelona urban background site and Montseny rural background site in northeastern Spain. We determined the chemical composition of samples, allowing us to perform source apportionment using positive matrix factorization. The OP of PM was determined by measuring reactive oxygen species using dithiothreitol and ascorbic acid assays. Finally, to link the sources with the measured OP, both a Pearson's correlation and a multiple linear regression model were applied to the dataset. The results showed that in Barcelona, the OP of PM10 was much higher than those of PM2.5 and PM1, whereas in Montseny results for all PM sizes were in the same range, but significantly lower than in Barcelona. In Barcelona, several anthropogenic sources were the main drivers of OP in PM10 (Combustion + Road Dust + Heavy Oil + OC-rich) and PM2.5 (Road Dust + Combustion). In contrast, PM1 -associated OP was driven by Industry, with a much lower contribution to PM10 and PM2.5 mass. Meanwhile, Montseny exhibited no clear drivers for OP evolution, likely explaining the lack of a significant difference in OP between PM10, PM2.5, and PM1. Overall, this study indicates that size fraction matters for OP, as a function of the environment typology. In an urban context, OP is driven by the PM10 and PM1 size fractions, whereas only the PM1 fraction is involved in rural environments.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Espanha , Tamanho da Partícula , Material Particulado/análise , Poeira/análise , Estresse Oxidativo
10.
Chemosphere ; 304: 135347, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35714951

RESUMO

It is well established that in environments where NH3 abundance is limiting in secondary PM2.5 generation, a reduction of NH3 emissions can result in an important contribution to air quality control. However, as deduced from open data published by the European Environmental Agency, the availability of measurements of NH3 concentrations is very scarce, with very few countries in Europe reporting data consistently for extensive periods, this being especially true for urban background sites. In this framework, simultaneous multi-site measurements were carried out in NE (Northeast) Spain from 2011 to 2020, using diffusion tubes. The highest NH3 concentrations were recorded at the traffic site (5.3 µgm-3 on average), followed by those measured at the urban background site (2.1 µgm-3). Mean concentrations at the mountain site were 1.6 µgm-3, while the lowest concentrations were recorded at the regional site (0.9 µgm-3). This comparison highlights traffic emissions as an important source of NH3. A statistically significant time trend of this pollutant was observed at the urban background site, increasing by 9.4% per year. A season-separated analysis also revealed a significant increasing trend at the mountain site during summer periods, probably related with increasing emissions from agricultural/livestock activities. These increases in NH3 concentrations were hypothesized to be responsible for the lack of a decreasing trend of NO3- concentrations at the monitoring sites, in spite of a markedly reduction of NO2 during the period, especially at the urban background. Thus, this would in turn affect the effectiveness of current action plans to abate fine aerosols, largely made up of secondary compounds. Actions to reduce NH3 concentrations at urban backgrounds are challenging though, as predicting NH3 is subjected to a high uncertainty and complexity due to its dependence on a variety of factors. This complexity was clearly indicated by the application of a decision tree algorithm to find the parameters better predicting NH3 at the urban background under study. O3, NO, NO2, CO, SO2 and OM + EC concentrations, together with meteorological indicators, were used as independent variables, obtaining no combination of parameters evidently able to predict significant differences in NH3 concentrations, with a coefficient of determination between real and predicted measurements lower than 0.50. This emphasizes the need for highly temporally and spatially resolved NH3 measurements for an accurate design of abatement actions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Amônia/análise , Monitoramento Ambiental , Dióxido de Nitrogênio/análise , Material Particulado/análise , Espanha
11.
Chemosphere ; 294: 133775, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35104541

RESUMO

Concentration levels of 16 organophosphate esters (OPEs) and 18 halogenated flame retardants (HFRs) were measured in airborne fine particulate matter (PM2.5) from an e-waste dismantling facility in Catalonia (Spain) to assess their occurrence, profiles and potential health risks. Three different areas from the facility were studied, including an area for cathodic ray-tube (CRT) TV dismantling, a grinding area, and the outdoor background. OPEs and HFRs were detected in all samples, with concentrations between 10.4 and 110 ng/m3 for OPEs and from 0.72 to 2213 ng/m3 for HFRs. The compounds with highest concentrations in both working areas were triphenyl phosphate (TPHP) and tris(2-chloroisopropyl) phosphate (TCIPP) for OPEs and decabromodiphenyl ether (BDE-209) for HFRs. Higher concentration levels were found in the CRT area compared to the grinding one, probably due to the lower ventilation and different types of e-waste being processed. OPEs were also detected in the solid e-waste from the facility, highlighting the need to evaluate pollutant levels in e-waste before proceeding to its re-use. Estimated daily intakes via inhalation during workday were calculated, as well as carcinogenic and non-carcinogenic health risks, these being 25 and 50 times lower than threshold risk values in the worst cases, respectively. However, this calculated risk only considers the workday exposure via inhalation, while other routes of exposure (e.g., ingestion, dermal) could bring these values closer to threshold values.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , China , Poeira/análise , Resíduo Eletrônico/análise , Monitoramento Ambiental , Ésteres , Retardadores de Chama/análise , Organofosfatos/análise , Reciclagem , Espanha
12.
Sci Total Environ ; 833: 154871, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35364180

RESUMO

Electronic waste (WEEE; from TV screens to electric toothbrushes) is one of the fastest growing waste streams in the world. Prior to recycling, e-waste components (metals, wood, glass, etc.) are processed by shredding, grinding and chainsaw cutting. These activities generate fine and ultrafine particle emissions, containing metals as well as organics (e.g., flame retardants), which have high potential for human health impacts as well as for environmental release. In this work, release of fine and ultrafine particles, and their exposure impacts, was assessed in an e-waste recycling facility under real-world operating conditions. Parameters monitored were black carbon, particle mass concentrations, ultrafine particles, and aerosol morphology and chemical composition. Potential health impacts were assessed in terms of cytotoxicity (cell viability) and oxidative stress (ROS) on <2 µm particles collected in liquid suspension. Environmental release of WEEE aerosols was evidenced by the higher particle concentrations monitored outside the facility when compared to the urban background (43 vs.11 µgPM2.5/m3, respectively, or 2.4 vs. 0.2 µgCa/m3). Inside the facility, concentrations were higher in the top than on the ground floor (PM2.5 = 147 vs. 78 µg/m3, N = 15.4 ∗ 104 vs. 8.7 ∗ 104/cm3, BC = 12.4 vs. 7.2 µg/m3). Ventilation was a key driver of human exposure, in combination with particle emissions. Key chemical tracers were Ca (from plastic fillers) and Fe (from wiring and other metal components). Y, Zr, Cd, Pb, P and Bi were markers of cathode TV recycling, and Li and Cr of grinding activities. While aerosols did not evidence cytotoxic effects, ROS generation was detected in 4 out of the 12 samples collected, associated to the ultrafine fraction. We conclude on the need for studies on aerosol emissions from WEEE facilities, especially in Europe, due to their demonstrable environmental and human health impacts and the rapidly growing generation of this type of waste.


Assuntos
Resíduo Eletrônico , Retardadores de Chama , Aerossóis/análise , Resíduo Eletrônico/análise , Monitoramento Ambiental , Retardadores de Chama/análise , Retardadores de Chama/toxicidade , Humanos , Metais/toxicidade , Material Particulado/análise , Espécies Reativas de Oxigênio
13.
Sci Total Environ ; 769: 145105, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33485201

RESUMO

For the first time, the concentrations of 19 organophosphate esters (OPEs) were measured in airborne fine particulate matter (PM2.5) from subway stations in Barcelona (Spain) to investigate their occurrence, contamination profiles and associated health risks. OPEs were detected in all PM2.5 samples with levels ranging between 1.59 and 202 ng/m3 (mean value of 39.9 ng/m3). Seventeen out of 19 tested analytes were detected, with TDClPP, TClPP and TCEP being those presenting the highest concentrations. OPE concentrations are not driven by the same factors that determine the ambient PM2.5 concentrations of other constituents in the subway. Newer stations presented higher OPE levels, probably due to the materials used in the design of the platforms, with greater use of modern plastic materials versus older stations with tiles and stones. Estimated daily intakes via airborne particles inhalation during the time expended in subway stations were calculated, as well as the carcinogenic and non-carcinogenic health risks (CR and non-CR), all being much lower than the threshold risk values. Thus, subway inhalation exposure when standing on the platform to OPE's per se is not considered to be dangerous for commuters.

15.
Sci Total Environ ; 649: 1541-1552, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308922

RESUMO

Levels of particle-phase legacy polybrominated diphenyl ethers (PBDEs), and novel brominated and chlorinated flame retardants, such as decabromodiphenyl ethane (DBDPE) and Dechlorane Plus (DP), were measured in ambient outdoor air, indoor workplace air and indoor dust, in different locations across Spain. PBDE concentrations were generally higher in outdoor ambient air samples than in indoor air, ranging between 1.18 and 28.6 pg m-3, while DP was the main flame retardant (FR) in indoor air (2.90-42.6 pg m-3). A different behavior of legacy versus novel FRs was observed in all the environments and matrices considered, which seemed to indicate a progressive replacement of the former. Although the emission sources could not be fully identified, certain evidences suggested that high outdoor PBDE concentrations could be associated with old goods in landfills and recycling centers, while high indoor DP concentrations were linked to the presence of new electronic devices. A direct impact of land use on outdoor atmospheric DP concentrations was observed, with DP concentrations correlating with high density of buildings within a city. In addition, DP concentrations outdoors correlated with inorganic species with FR properties (e.g., Cr, Cu). Significant differences in the fraction of anti-DP to the total DP (Fanti ratio) were observed between indoor air (PM2.5) and dust (PM10), which could be related with: a) a dependence on particle size, suggesting a higher relative abundance of the anti-isomer in PM10 than in PM2.5, while similar concentrations were recorded for the syn-isomer; b) a higher deposition rate of the anti-isomer compared to the syn-isomer; and/or c) a more accentuated preferential degradation of the anti-isomer linked to artificial light or other agents coexisting in the air. The detectable presence of all the FR families analyzed in indoor air and dust points to the importance of monitoring these compounds in order to minimize human exposure.

16.
Sci Total Environ ; 650(Pt 1): 1582-1590, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308844

RESUMO

Cycling and walking are promoted as means of transportation which can contribute to the reduction of traffic pollution in urban areas. However, cyclists and pedestrians may be exposed to high concentrations of air pollutants due to their proximity to vehicle emissions. Commercial face mask respirators are widely used, in both developing and developed countries, as an individual protective measure against particle pollution. However scientific data on the efficacy of face mask respirators in reducing airborne particle exposure is limited. In this study, a custom experimental set-up was developed in order to measure the effectiveness of nine different respirators under real environmental conditions in terms of particle mass concentration below 2.5 µm (PM2.5), particle number concentration (PNC), Lung Deposited Surface Area (LDSA) and Black Carbon concentration (BC). Face mask performances were assessed in a typical traffic affected urban background environment in the city of Barcelona under three different simulated breathing rates to investigate the influence of flow rate. Results showed a median face mask effectiveness for PM2.5 equal to 48% in a range of 14-96%, 19% in a range of 6%-61% for BC concentration, 19% in a range of 4%-63% for PNC and 22% in a range of 5%-65% for LDSA. For each pollutant under investigation, the best performance was found always with the same mask (N7) although it is not the most expensive (in a range of price of 1 to 44, its cost was 20 euros), which has a filter on the entire surface except for the 2 exhalation valves where air cannot enter but just exit and shows a good fit on the dummy head.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Exposição por Inalação/prevenção & controle , Máscaras , Material Particulado/análise , Cidades , Humanos , Exposição por Inalação/estatística & dados numéricos , Roupa de Proteção , Emissões de Veículos/análise
17.
Sci Total Environ ; 686: 737-752, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31195282

RESUMO

The 2001-2016 contribution of African dust outbreaks to ambient regional background PM10 and PM2.5 levels over Spain, as well as changes induced in the PMx composition over NE Spain in 2009-2016, were investigated. A clear decrease in PMx dust contributions from the Canary Islands to N Iberia was found. A parallel increase in the PM2.5/PM10 ratio (30% in the Canary Islands to 57% in NW Iberia) was evidenced, probably due to size segregation and the larger relative contribution of the local PMx with increasing distance from Africa. PM1-10 and PM2.5-10 measured in Barcelona during African dust outbreaks (ADOs) were 43-46% higher compared to non-ADO days. The continental background contribution prevailed in terms of both PM1-10 and PM2.5-10 during ADO days (62 and 69%, respectively, and 31 and 27% for non-ADO days). The relative contributions of Al2O3/Fe2O3/CaO to PMx fraction showed that Al2O3 is a suitable tracer for African dust in our context; while CaO at the urban site is clearly affected by local resuspension, construction and road dust, and Fe2O3 by dust from vehicle brake discs. The results also provide evidence that PM increases during ADOs are caused not only by the mineral dust load, but by an increased accumulation of locally emitted or co-transported anthropogenic pollutants as compared with non-ADO days. Possible causes for this accumulation are discussed. We recommend that further epidemiological studies should explore independently the potential effects of mineral dust and the anthropogenic PM during ADOs, because, at least over SW Europe, not only mineral dust affects the air quality during African dust episodes.

18.
Sci Total Environ ; 686: 236-245, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176822

RESUMO

While exposure to traffic pollutants significantly decreases with distance from the curb, very dense urban architectures hamper such dispersion. Moreover, the building height reduces significantly the dispersion of pollutants. We have investigated the horizontal variability of Black Carbon (BC) and the vertical variability of NO2 and BC within the urban blocks. Increasing the distance from road BC concentrations decreased following an exponential curve reaching halving distances at 25 m (median), although with a wide variability among sites. Street canyons showed sharper fall-offs than open roads or roads next to a park. Urban background concentrations were achieved at 67 m distance on average, with higher distances found for more trafficked roads. Vertical fall-off of BC was less pronounced than the horizontal one since pollutants homogenize quickly vertically after rush traffic hours. Even shallower vertical fall-offs were found for NO2. For both pollutants, background concentrations were never reached within the building height. A street canyon effect was also found exacerbating concentrations at the lowest floors of the leeward side of the road. These inputs can be useful for assessing population exposure, air quality policies, urban planning and for models validation.

19.
Med Intensiva (Engl Ed) ; 43(7): 410-415, 2019 Oct.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-29887293

RESUMO

BACKGROUND: Hypoperfusion plays a central role in shock states, and has been proposed as a coagulopathy trigger. The study of the rotational thromboelastometry (ROTEM) profile during cardiac arrest could offer new insights to the role of hypoperfusion in coagulation during shock states. OUTCOME: To describe the ROTEM profile in a cohort of asystole donors and elucidate the incidence of hyperfibrinolysis. DESIGN: A prospective observational study was carried out in 18 patients consecutively admitted to the ICU after out-of-hospital non-recovered cardiac arrest (CA). Initial rhythm and time between CA and admission were recorded. Conventional coagulation and ROTEM (EXTEM, APTEM, FIBTEM) tests were performed within 30minutes after blood sample collection. SCOPE: An asystole donor reference hospital. PARTICIPANTS: Patients admitted to the ICU after out-of-hospital non-recovered CA. RESULTS: The median age was 50years, and 14 of the patients were men (77.8%). The time from CA to hospital admission expressed as the median (interquartile range) was 91minutes (75-104). The results of the routine tests were: INR 1.25 (1.19-1.34), aPTT 55s (45-73) and fibrinogen 161mg/dl (95-295). For the ROTEM APTEM assay the results were: CT 126s (104-191), CFT 247s (203-694). Hyperfibrinolysis criteria were recorded in 15 patients (83.3%). In addition, MCF improved in APTEM versus EXTEM. Prolonged CA times were associated to lower fibrinogen levels and lower values for MCF FIBTEM (P<.05). CONCLUSIONS: The ROTEM assays revealed severe alterations of the clot formation parameters and a high incidence of hyperfibrinolysis.


Assuntos
Fibrinólise/fisiologia , Parada Cardíaca Extra-Hospitalar/sangue , Tromboelastografia/métodos , Doadores de Tecidos , Testes de Coagulação Sanguínea , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Parada Cardíaca Extra-Hospitalar/fisiopatologia , Estudos Prospectivos , Fatores de Tempo
20.
Med Intensiva (Engl Ed) ; 43(3): 131-138, 2019 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-29415812

RESUMO

OBJECTIVE: To validate the diagnostic ability of six different scores to predict massive bleeding in a prehospital setting. DESIGN: Retrospective cohort. SETTING: Prehospital attention of patients with severe trauma. SUBJECTS: Subjects with more than 15 years, a history of severe trauma (defined by code 15 criteria), that were initially assisted in a prehospital setting by the emergency services between January 2010 and December 2015 and were then transferred to a level one trauma center in Madrid. VARIABLES: To validate: 1. Trauma Associated Severe Haemorrhage Score. 2. Assessment of Blood Consumption Score. 3. Emergency Transfusión Score. 4. Índice de Shock. 5. Prince of Wales Hospital/Rainer Score. 6. Larson Score. RESULTS: 548 subjects were studied, 76,8% (420) were male, median age was 38 (interquartile range [IQR]: 27-50). Injury Severity Score was 18 (IQR: 9-29). Blunt trauma represented 82,5% (452) of the cases. Overall, frequency of MB was 9,2% (48), median intensive care unit admission days was 2,1 (IQR: 0,8 - 6,2) and hospital mortality rate was 11,2% (59). Emergency Transfusión Score had the highest precisions (AUC 0,85), followed by Trauma Associated Severe Haemorrhage score and Prince of Wales Hospital/Rainer Score (AUC 0,82); Assessment of Blood Consumption Score was the less precise (AUC 0,68). CONCLUSION: In the prehospital setting the application of any the six scoring systems predicts the presence of massive hemorrhage and allows the activation of massive transfusion protocols while the patient is transferred to a hospital.


Assuntos
Hemorragia/diagnóstico , Ferimentos e Lesões/complicações , Adulto , Área Sob a Curva , Transfusão de Sangue/estatística & dados numéricos , Serviços Médicos de Emergência , Feminino , Hemorragia/etiologia , Hemorragia/terapia , Mortalidade Hospitalar , Humanos , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Choque Hemorrágico/etiologia , Espanha/epidemiologia , Ferimentos e Lesões/epidemiologia , Ferimentos não Penetrantes/complicações , Ferimentos não Penetrantes/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA