Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(11): e202318559, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38153004

RESUMO

Electron-phonon interactions, crucial in condensed matter, are rarely seen in Metal-Organic Frameworks (MOFs). Detecting these interactions typically involves analyzing luminescence in lanthanide- or actinide-based compounds. Prior studies on Ln- and Ac-based MOFs at high temperatures revealed additional peaks, but these were too faint for thorough analysis. In our research, we fabricated a high-quality, crystalline uranium-based MOF (KIT-U-1) thin film using a layer-by-layer method. Under UV light, this film showed two distinct "hot bands," indicating a strong electron-phonon interaction. At 77 K, these bands were absent, but at 300 K, a new emission band appeared with half the intensity of the main luminescence. Surprisingly, a second hot band emerged above 320 K, deviating from previous findings in rare-earth compounds. We conducted a detailed ab-initio analysis employing time-dependent density functional theory to understand this unusual behaviour and to identify the lattice vibration responsible for the strong electron-phonon coupling. The KIT-U-1 film's hot-band emission was then utilized to create a highly sensitive, single-compound optical thermometer. This underscores the potential of high-quality MOF thin films in exploiting the unique luminescence of lanthanides and actinides for advanced applications.

2.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985688

RESUMO

Gas-phase infiltration of the carbonylchloridogold(I), Au(CO)Cl precursor into the pores of HKUST-1 ([Cu3(BTC)2(H2O)2], Cu-BTC) SURMOFs (surface-mounted metal-organic frameworks; BTC = benzene-1,3,5-tricarboxylate) leads to Au(CO)Cl decomposition within the MOF through hydrolysis with the aqua ligands on Cu. Small Aux clusters with an average atom number of x ≈ 5 are formed in the medium-sized pores of the HKUST-1 matrix. These gold nanoclusters are homogeneously distributed and crystallographically ordered, which was supported by simulations of the powder X-ray diffractometric characterization. Aux@HKUST-1 was further characterized by scanning electron microscopy (SEM) and infrared reflection absorption (IRRA) as well as Raman spectroscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP-OES).

3.
J Am Chem Soc ; 144(8): 3603-3613, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179895

RESUMO

We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal-organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H4-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1. This reduction in thermal conductivity goes in tandem with an increase in density of 38% and corresponding increase in heat capacity of ∼48%, defying conventional effective medium scaling of thermal properties of porous materials. We explore the origin of this reduction by experimentally investigating the guest molecules' effects on the mechanical properties of the MOF and performing atomistic simulations to elucidate the roles of the mass and bonding environments on thermal conductivity. The reduction in thermal conductivity can be ascribed to an increase in vibrational scattering introduced by extrinsic guest-MOF collisions as well as guest molecule-induced modifications to the intrinsic vibrational structure of the MOF in the form of hybridization of low frequency modes that is concomitant with an enhanced population of localized modes. The concentration of localized modes and resulting reduction in thermal conductivity do not seem to be significantly affected by the mass or bonding strength of the guest species.

4.
Chemistry ; 23(57): 14316-14322, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28815774

RESUMO

When chromophores are brought into close proximity, noncovalent interactions (π-π/CH-π) can lead to the formation of excitonically coupled states, which bestow new photophysical properties upon the aggregates. Because the properties of the new states not only depend on the strength of intermolecular interactions, but also on the relative orientation, supramolecular assemblies, where these parameters can be varied in a deliberate fashion, provide novel possibilities for the control of photophysical properties. This work reports that core-substituted naphthalene diimides (cNDIs) can be incorporated into surface-mounted metal- organic structures/frameworks (SURMOFs) to yield optical properties strikingly different from conventional aggregates of such molecules, for example, formed in solution or by crystallization. Organic linkers are used, based on cNDIs, well-known organic chromophores with numerous applications in different optoelectronic devices, to fabricate MOF thin films on transparent substrates. A thorough characterization of the properties of these highly ordered chromophoric assemblies reveals the presence of non-emissive excited states in the crystalline material. Structural modulations provide further insights into the nature of the coupling that gives rise to an excited-state energy level in the periodic structure.

5.
Nanotechnology ; 28(11): 115605, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211359

RESUMO

We describe a novel procedure to fabricate WO3@surface-mounted metal-organic framework (SURMOF) hybrid materials by electrodeposition of WO3 nanoparticles into HKUST-1, also termed Cu3(BTC)2 SURMOFs. These materials have been characterized using x-ray diffraction, time-of-flight secondary ion mass spectrometry, scanning electron microscopy, x-ray photoelectron spectroscopy as well as linear sweep voltammetry. The WO3 semiconductor/SURMOF heterostructures were further tested as hybrid electrodes in their performance for hydrogen evolution reaction from water.

6.
Opt Express ; 23(11): 13725-33, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072745

RESUMO

Monolithic, crystalline and highly oriented coordination network compound (CNC) Prussian blue (PB) thin films have been deposited though different routes on conductive substrates. Characterization of the monolithic thin films reveals a long-term stability, even after many redox cycles the crystallinity as well as the high orientation remain intact during the electrochromic switching process.

7.
Nanotechnology ; 26(5): 051001, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25591051

RESUMO

Here, we report for the first time a 'ligand free' method of designing 1D TiOx supramolecular network materials, which starts from Ti bare metal powder. Each TiOx oxidation step has been carefully investigated with different analytical techniques, including high resolution transmission electron microscopy/high resolution scanning electron microscopy (HRTEM/HRSEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and superconducting quantum interference device (SQUID) measurements. The self-assembly of TiOx nanoparticles (NPs) into 1D supramolecular nanoparticle networks is induced by the formation of mixed valent Ti(II,III) species. The synthesis starts with etching a bare Ti surface, followed by a continuous oxidation of TiOx clusters and NPs, and it finally ends with the self-assembly into rigid 1D NPs chains. Today, such self-assembled 1D NP TiOx network materials are bridging the gap between the nanoscale and the macroscopic material world and will further provide interesting research opportunities.

8.
Angew Chem Int Ed Engl ; 54(25): 7441-5, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25960115

RESUMO

For inorganic semiconductors crystalline order leads to a band structure which gives rise to drastic differences to the disordered material. An example is the presence of an indirect band gap. For organic semiconductors such effects are typically not considered, since the bands are normally flat, and the band-gap therefore is direct. Herein we show results from electronic structure calculations demonstrating that ordered arrays of porphyrins reveal a small dispersion of occupied and unoccupied bands leading to the formation of a small indirect band gap. We demonstrate herein that such ordered structures can be fabricated by liquid-phase epitaxy and that the corresponding crystalline organic semiconductors exhibit superior photophysical properties, including large charge-carrier mobility and an unusually large charge-carrier generation efficiency. We have fabricated a prototype organic photovoltaic device based on this novel material exhibiting a remarkable efficiency.

9.
Small ; 8(1): 68-72, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22095912

RESUMO

A universal, simple, robust, widely applicable and cost-effective aqueous process is described for a controlled oxidative dissolution process of micrometer-sized metal powders to form high-purity aqueous dispersions of colloidally stable 3-8 nm metal oxide nanoparticles. Their utilization for making single and multilayer optically transparent high-surface-area nanoporous films is demonstrated. This facile synthesis is anticipated to find numerous applications in materials science, engineering, and nanomedicine.


Assuntos
Membranas Artificiais , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Óxidos/química , Porosidade
10.
J Phys Condens Matter ; 34(40)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-33596560

RESUMO

This investigation on metal-organic framework (MOF) HUKUST-1 films focuses on comparing the undoped pristine state and with the case of doping by TCNQ infiltration of the MOF pore structure. We have determined the temperature dependent charge transport andp-type conductivity for HKUST-1 films. Furthermore, the electrical conductivity and the current-voltage characteristics have been characterized in detail. Because the most common forms of MOFs, bulk MOF powders, do not lend themselves easily to electrical characterization investigations, here in this study the electrical measurements were performed on dense, compact surface-anchored metal-organic framework (SURMOF) films. These monolithic, well-defined, and (001) preferentially oriented MOF thin films are grown using quasi-liquid phase epitaxy (LPE) on specially functionalized silicon or borosilicate glass substrates. In addition to the pristine SURMOF films also the effect of loading these porous thin films with TCNQ has been investigated. Positive charge carrier conduction and a strong anisotropy in electrical conduction was observed for highly oriented SURMOF films and corroborated with Seebeck coefficient measurements. Van der Pauw four-point Hall sample measurements provide important insight into the electrical behavior of such porous and hybrid organic-inorganic crystalline materials, which renders them attractive for potential use in microelectronic and optoelectronic devices and thermoelectric applications.

11.
Chem Mater ; 34(22): 9836-9843, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36439317

RESUMO

For the first time, a procedure has been established for the growth of surface-anchored metal-organic framework (SURMOF) copper(II) benzene-1,4-dicarboxylate (Cu-BDC) thin films of thickness control with single molecule accuracy. For this, we exploit the novel method solution atomic layer deposition (sALD). The sALD growth rate has been determined at 4.5 Å per cycle. The compact and dense SURMOF films grown at room temperature by sALD possess a vastly superior film thickness uniformity than those deposited by conventional solution-based techniques, such as dipping and spraying while featuring clear crystallinity from 100 nm thickness. The highly controlled layer-by-layer growth mechanism of sALD proves crucial to prevent unwanted side reactions such as Ostwald ripening or detrimental island growth, ensuring continuous Cu-BDC film coverage. This successful demonstration of sALD-grown compact continuous Cu-BDC SURMOF films is a paradigm change and provides a key advancement enabling a multitude of applications that require continuous and ultrathin coatings while maintaining tight film thickness specifications, which were previously unattainable with conventional solution-based growth methods.

12.
Small ; 7(24): 3465-71, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22009683

RESUMO

To manipulate electrons in semiconductor electronic and optical devices, the usual approach is through materials composition, electronic bandgap, doping, and interface engineering. More advanced strategies for handling electrons in semiconductor devices include composition-controlled heterostructures and gradient structures. By analogy to the manipulation of electrons in semiconductor crystals by electronic bandgaps, photons in photonic crystals can be managed using photonic bandgaps. In this context, the simplest photonic crystal is the Bragg mirror, a periodic dielectric construct whose photonic bandgap is engineered through variations of the optical thickness of its constituent layers. Traditionally the materials comprising these periodic dielectric layers are nonporous, and they have mainly been used in the field of optical and photonic devices. More recently these Bragg mirrors have been made porous by building the layers from nanoparticles with functionality and utility that exploit their internal voids. These structures are emerging in the area of photonic color-coded chemical sensing and controlled chemical release. Herein, a strategy for enhancing the functionality and potential utility of nanoparticle Bragg mirrors by making the constituent dielectric layers aperiodic and porous is described. It is exemplified by prototypical tandem and gradient structures that are fully characterized with regards to their structure, porosity, and optical and photonic properties.


Assuntos
Nanopartículas/química , Dispositivos Ópticos , Porosidade , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho
13.
Chemistry ; 16(12): 3849-58, 2010 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20187043

RESUMO

Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (M-NPs) have been reproducibly obtained by facile, rapid (3 min), and energy-saving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal-carbonyl precursors [M(x)(CO)(y)] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF(4)]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180-250 degrees C, 6-12 h) of [M(x)(CO)(y)] in ILs. The MWI-obtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active and easily recyclable catalysts for the biphasic liquid-liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product) (mol Ru)(-1) h(-1) and 884 (mol product) (mol Rh)(-1) h(-1) and give almost quantitative conversion within 2 h at 10 bar H(2) and 90 degrees C. Catalyst poisoning experiments with CS(2) (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of Ru-NPs.

14.
ACS Appl Mater Interfaces ; 12(46): 52166-52174, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33155817

RESUMO

Lanthanide-based crystalline coatings have a great potential for energy-conversion devices, but until now luminescent surface-anchored materials were difficult to fabricate. Thin films, called lanthanides surface-mounted metal-organic frameworks (SURMOFs) with tetrasubstituted halide (fluorine, chlorine, and bromine) terephthalic acid derivative linkers as a basic platform for optical devices, exhibit a high quantum yield of fluorescence visible to the naked eyes under ambient light. We show that we can tune the luminescent properties in thin films by halide substitution, which affords control over the molecular structure of the material. We rationalize the mechanism for the modulation of the photophysical properties by "antenna effect", which controls the energy transfer and quantum yields using experimental and theoretical techniques for chelated lanthanides as a function of the type of atom substitutions at the phenyl rings and the resulting dihedral angle between phenyl rings in the linkers and carboxylate groups.

15.
Nat Commun ; 11(1): 4010, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782252

RESUMO

Whether the presence of adsorbates increases or decreases thermal conductivity in metal-organic frameworks (MOFs) has been an open question. Here we report observations of thermal transport in the metal-organic framework HKUST-1 in the presence of various liquid adsorbates: water, methanol, and ethanol. Experimental thermoreflectance measurements were performed on single crystals and thin films, and theoretical predictions were made using molecular dynamics simulations. We find that the thermal conductivity of HKUST-1 decreases by 40 - 80% depending on the adsorbate, a result that cannot be explained by effective medium approximations. Our findings demonstrate that adsorbates introduce additional phonon scattering in HKUST-1, which particularly shortens the lifetimes of low-frequency phonon modes. As a result, the system thermal conductivity is lowered to a greater extent than the increase expected by the creation of additional heat transfer channels. Finally, we show that thermal diffusivity is even more greatly reduced than thermal conductivity by adsorption.

16.
Chemistry ; 15(39): 10047-59, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-19697371

RESUMO

Gold nanoparticles (Au-NPs) were reproducibly obtained by thermal, photolytic, or microwave-assisted decomposition/reduction under argon from Au(CO)Cl or KAuCl(4) in the presence of n-butylimidazol dispersed in the ionic liquids (ILs) BMIm(+)BF(4)(-), BMIm(+)OTf(-), or BtMA(+)NTf(2)(-) (BMIm(+) = n-butylmethylimidazolium, BtMA(+) = n-butyltrimethylammonium, OTf(-) = (-)O(3)SCF(3), NTf(2)(-) = (-)N(O(2)SCF(3))(2)). The ultra small and uniform nanoparticles of about 1-2 nm diameter were produced in BMIm(+)BF(4)(-) and increased in size with the molecular volume of the ionic liquid anion used in BMIm(+)OTf(-) and BtMA(+)NTf(2)(-). Under argon the Au-NP/IL dispersion is stable without any additional stabilizers or capping molecules. From the ionic liquids, the gold nanoparticles can be functionalized with organic thiol ligands, transferred, and stabilized in different polar and nonpolar organic solvents. Au-NPs can also be brought onto and stabilized by interaction with a polytetrafluoroethylene (PTFE, Teflon) surface. Density functional theory (DFT) calculations favor interactions between IL anions instead of IL cations. This suggests a AuF interaction and anionic Au(n) stabilization in fluorine-containing ILs. The (19)F NMR signal in BMIm(+)BF(4)(-) shows a small Au-NP concentration-dependent shift. Characterization of the dispersed and deposited gold nanoparticles was done by transmission electron microscopy (TEM/HRTEM), transmission electron diffraction (TED), dynamic light scattering (DLS), UV/Vis absorbance spectroscopy, scanning electron microscopy (SEM), electron spin resonance (ESR), and electron probe micro analyses (EPM, SEM/EDX).

17.
Chem Commun (Camb) ; (16): 2103-5, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19360160

RESUMO

The dark-blue crystal color of {(C(4)H(12)N(2))(2)[Cu(I)I(4)](I(2))}(n), its mixture of I(-), I(3)(-) and linear I(4)(2-) or linear I(5)(-) polyiodide species in a linear channel arrangement, its channel diameter of approximately 5.5 A and the helical arrangement of the hydrogen bonded {(C(4)H(12)N(2))(2)[Cu(I)I(4)]}(+) supramolecular host around the channels agree with the description of the classical, yet structurally elusive, starch-iodine compound.

18.
Beilstein J Nanotechnol ; 10: 1024-1037, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165029

RESUMO

The increased utilization of one-dimensional (1D) TiO2 and titanate nanowires (TNWs) in various applications was the motivation behind studying their stability in this work, given that stability greatly influences both the success of the application and the environmental impact. Due to their high abundance in aqueous environments and their rich technological applicability, surfactants are among the most interesting compounds used for tailoring the stability. The aim of this paper is to determine the influence of surfactant molecular structure on TNW stability/aggregation behavior in water and aqueous NaBr solution by dynamic and electrophoretic light scattering. To accomplish this, two structurally different quaternary ammonium surfactants (monomeric DTAB and the corresponding dimeric 12-2-12) at monomer and micellar concentrations were used to investigate TNW stability in water and NaBr. It was shown that TNWs are relatively stable in Milli-Q water. However, the addition of NaBr induces aggregation, especially as the TNW mass concentration increases. DTAB and 12-2-12 adsorb on TNW surfaces as a result of the superposition of favorable electrostatic and hydrophobic interactions. As expected, the interaction of TNWs with 12-2-12 was stronger than with DTAB, due to the presence of two positively charged head groups and two hydrophobic tails. As a consequence of the higher adsorption of 12-2-12, TNWs remained stable in both media, while DTAB showed an opposite behavior. In order to gain more insight into changes in the surface properties after surfactant adsorption on the TNW surface, a surface complexation model was employed. With this first attempt to quantify the contribution of the surfactant structure on the adsorption equilibrium according to the observed differences in the intrinsic log K values, it was shown that 12-2-12 interacts more strongly with TNWs than DTAB. The modelling results enable a better understanding of the interaction between TNWs and surfactants as well as the prediction of the conditions that can promote stabilization or aggregation.

19.
Chem Commun (Camb) ; (15): 1789-91, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18379694

RESUMO

Stable chromium, molybdenum and tungsten nanoparticles are obtained reproducibly by thermal or photolytic decomposition under argon from mononuclear metal carbonyl precursors M(CO)(6) (M=Cr, Mo, W) suspended in the ionic liquids BMim(+)BF(4)(-), BMim(+)OTf(-) and BtMA(+)Tf(2)N(-) (BMim(+)=n-butyl-methyl-imidazolium, BtMA(+)=n-butyl-trimethyl-ammonium, Tf(2)N=N(O(2)SCF(3))(2), OTf=O(3)SCF(3)) with a very small and uniform size of 1 to 1.5 nm in BMim(+)BF(4)(-) which increases with the molecular volume of the ionic liquid anion to approximately 100 nm in BtMA(+)Tf(2)N(-) [characterization by transmission electron microscopy (TEM), dynamic light scattering and transmission electron diffraction (TED) analysis].

20.
Nanoscale ; 10(36): 17099-17104, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30179247

RESUMO

We describe a non-conventional, MOF-based approach with modified linkers to fabricate 3D Bi2O3 supracrystals. The nanoparticle (NP) assembly exhibits bcc-packing, which is difficult to achieve with other methods. The NPs possess a very narrow size distribution. The individual NPs were synthesized inside the pores of a surface-mounted metal-organic framework (SURMOF) template via a photo-decomposition procedure. The supracrystals were thoroughly characterized using X-ray diffraction (XRD), infrared (IR) and Raman spectroscopy as well as high-resolution transmission electron microscopy (HR-TEM) and SAED (Selected Area Electron Diffraction). In order to achieve sharp size distributions of the NPs, the pores within the SURMOF were functionalized with amino (-NH2) functional groups acting as nucleation centers. MOFs lacking such additional functionalities, Cu3(BTC)2, yielded much broader size distributions. These findings provide a unique molecular design tool for creating nanometer-sized reaction compartments for the synthesis of supracrystals with packing types not accessible via self-assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA