Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 366: 64-74, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30685480

RESUMO

The anticancer drug ellipticine exerts its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. The present study has examined the role of cytochrome P450 oxidoreductase (POR) and cytochrome b5 (Cyb5), electron donors to P450 enzymes, in the CYP-mediated metabolism and disposition of ellipticine in vivo. We used Hepatic Reductase Null (HRN) and Hepatic Cytochrome b5/P450 Reductase Null (HBRN) mice. HRN mice have POR deleted specifically in hepatocytes; HBRN mice also have Cyb5 deleted in the liver. Mice were treated once with 10 mg/kg body weight ellipticine (n = 4/group) for 24 h. Ellipticine-DNA adduct levels measured by 32P-postlabelling were significantly lower in HRN and HBRN livers than in wild-type (WT) livers; however no significant difference was observed between HRN and HBRN livers. Ellipticine-DNA adduct formation in WT, HRN and HBRN livers correlated with Cyp1a and Cyp3a enzyme activities measured in hepatic microsomes in the presence of NADPH confirming the importance of P450 enzymes in the bioactivation of ellipticine in vivo. Hepatic microsomal fractions were also utilised in incubations with ellipticine and DNA in the presence of NADPH, cofactor for POR, and NADH, cofactor for Cyb5 reductase (Cyb5R), to examine ellipticine-DNA adduct formation. With NADPH adduct formation decreased as electron donors were lost which correlated with the formation of the reactive metabolites 12- and 13-hydroxy-ellipticine in hepatic microsomes. No difference in adduct formation was observed in the presence of NADH. Our study demonstrates that Cyb5 contributes to the P450-mediated bioactivation of ellipticine in vitro, but not in vivo.


Assuntos
Antineoplásicos/metabolismo , Citocromo-B(5) Redutase/deficiência , Citocromos b5/deficiência , Elipticinas/metabolismo , Hepatócitos/enzimologia , Fígado/enzimologia , Ativação Metabólica , Animais , Antineoplásicos/farmacologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo-B(5) Redutase/genética , Citocromos b5/genética , Adutos de DNA/metabolismo , Elipticinas/farmacologia , Genótipo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Fenótipo
2.
Mutagenesis ; 34(5-6): 413-420, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31612222

RESUMO

The environmental carcinogen benzo[a]pyrene (BaP) is presumed to exert its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. However, studies using the Hepatic Reductase Null (HRN) mouse model, in which cytochrome P450 oxidoreductase (POR), the electron donor to CYP enzymes, is deleted specifically in hepatocytes, have shown that loss of hepatic POR-mediated CYP function leads to greater BaP-DNA adduct formation in livers of these mice than in wild-type (WT) mice. Here, we used CRISPR/Cas9 technology to knockout (KO) POR expression in mouse hepatoma Hepa1c1c7 cells to create an in vitro model that can mimic the HRN mouse model. Western blotting confirmed the deletion of POR in POR KO Hepa1c1c7 cells whereas expression of other components of the mixed-function oxidase system including cytochrome b5 (Cyb5) and NADH:cytochrome b5 reductase (which can also serve as electron donors to CYP enzymes), and CYP1A1 was similar in BaP-exposed WT and POR KO Hepa1c1c7 cells. BaP exposure caused cytotoxicity in WT Hepa1c1c7 cells but not in POR KO Hepa1c1c7 cells. In contrast, CYP-catalysed BaP-DNA adduct levels were ~10-fold higher in POR KO Hepa1c1c7 cells than in WT Hepa1c1c7 cells, in concordance with the presence of higher levels of BaP metabolite (e.g. BaP-7,8-dihydrodiol) in the medium of cultured BaP-exposed POR KO Hepa1c1c7 cells. As was seen in the HRN mouse model, these results suggest that Cyb5 contributes to the bioactivation of BaP in POR KO Hepa1c1c7 cells. These results indicate that CYP enzymes may play a more important role in the detoxication of BaP, as opposed to its bioactivation.


Assuntos
Benzo(a)pireno/efeitos adversos , Sistema Enzimático do Citocromo P-450/genética , Adutos de DNA/efeitos dos fármacos , Dano ao DNA/genética , Oxirredutases/genética , Ativação Metabólica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Adutos de DNA/efeitos adversos , Adutos de DNA/genética , Dano ao DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microssomos Hepáticos/efeitos dos fármacos
3.
Carcinogenesis ; 39(7): 851-859, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29726902

RESUMO

Many chemical carcinogens require metabolic activation via xenobiotic-metabolizing enzymes in order to exert their genotoxic effects. Evidence from numerous in-vitro studies, utilizing reconstituted systems, microsomal fractions and cultured cells, implicates cytochrome P450 enzymes as being the predominant enzymes responsible for the metabolic activation of many procarcinogens. With the development of targeted gene disruption methodologies, knockout mouse models have been generated that allow investigation of the in-vivo roles of P450 enzymes in the metabolic activation of carcinogens. This review covers studies in which five procarcinogens representing different chemical classes, benzo[a]pyrene, 4-aminobiphenyl (4-ABP), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-9H-pyrido[2,3-b]indole and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, have been administered to different P450 knockout mouse models. Paradoxically, while in-vitro studies using subcellular fractions enriched with P450 enzymes and their cofactors have been widely used to determine the pathways of activation of carcinogens, there is evidence from the in-vivo studies of cases where these same enzyme systems appear to have a more predominant role in carcinogen detoxication rather than activation.


Assuntos
Carcinógenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inativação Metabólica/fisiologia , Animais , Benzo(a)pireno/metabolismo , Butanonas/metabolismo , Humanos , Transdução de Sinais/fisiologia
4.
Arch Toxicol ; 92(4): 1625-1638, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29368147

RESUMO

Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b 5 /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes. In HBRN mice the microsomal haemoprotein cytochrome b 5 , which can also act as an electron donor from cytochrome b 5 reductase to P450s, is also deleted in the liver. Wild-type (WT), HRN and HBRN mice were treated by i.p. injection with 125 mg/kg body weight BaP for 24 h. Hepatic microsomal fractions were isolated from BaP-treated and untreated mice. In vitro incubations carried out with BaP-pretreated microsomal fractions, BaP and DNA resulted in significantly higher BaP-DNA adduct formation with WT microsomal fractions compared to those from HRN or HBRN mice. Adduct formation (i.e. 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP [dG-N2-BPDE]) correlated with observed CYP1A activity and metabolite formation (i.e. BaP-7,8-dihydrodiol) when NADPH or NADH was used as enzymatic cofactors. BaP-DNA adduct levels (i.e. dG-N2-BPDE) in vivo were significantly higher (~ sevenfold) in liver of HRN mice than WT mice while no significant difference in adduct formation was observed in liver between HBRN and WT mice. Our results demonstrate that POR and cytochrome b 5 both modulate P450-mediated activation of BaP in vitro. However, hepatic P450 enzymes in vivo appear to be more important for BaP detoxification than its activation.


Assuntos
Benzo(a)pireno/metabolismo , Citocromo-B(5) Redutase/metabolismo , Adutos de DNA/metabolismo , Hepatócitos/enzimologia , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Animais , Camundongos , Camundongos Knockout , Microssomos Hepáticos/enzimologia
5.
PeerJ ; 10: e13776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891646

RESUMO

Many studies have shown that algal growth is enhanced by organic carbon and algal mixotrophy is relevant for physiology and commercial cultivation. Most studies have tested only a single organic carbon concentration and report different growth parameters which hampers comparisons and improvements to algal cultivation methodology. This study compared growth of green algae Chlorella vulgaris and Chlamydomonas reinhardtii across a gradient of photoautotrophic-mixotrophic-heterotrophic culture conditions, with five acetate concentrations. Culture growth rates and biomass achieved were compared using different methods of biomass estimation. Both species grew faster and produced the most biomass when supplied with moderate acetate concentrations (1-4 g L-1), but light was required to optimize growth rates, biomass yield, cell size and cell chlorophyll content. Higher acetate concentration (10 g L-1) inhibited algal production. The choice of growth parameter and method to estimate biomass (optical density (OD), chlorophyll a fluorescence, flow cytometry, cell counts) affected apparent responses to organic carbon, but use of OD at 600, 680 or 750 nm was consistent. There were apparent trade-offs among exponential growth rate, maximum biomass, and culture time spent in exponential phase. Different cell responses over 1-10 g L-1 acetate highlight profound physiological acclimation across a gradient of mixotrophy. In both species, cell size vs cell chlorophyll relationships were more constrained in photoautotrophic and heterotrophic cultures, but under mixotrophy, and outside exponential growth phase, these relationships were more variable. This study provides insights into algal physiological responses to mixotrophy but also has practical implications for choosing parameters for monitoring commercial algal cultivation.


Assuntos
Chlorella vulgaris , Clorofila A , Clorofila , Carbono , Acetatos
6.
Artigo em Inglês | MEDLINE | ID: mdl-32265041

RESUMO

Diet is a major source of human exposure to polycyclic aromatic hydrocarbons (PAHs), of which benzo[a]pyrene (BaP) is the most commonly studied and measured. BaP has been considered to exert its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes whose activity can be modulated by cytochrome P450 oxidoreductase (POR), the electron donor to CYP enzymes. Previous studies showed that BaP-DNA adduct formation was greater in the livers of Hepatic Reductase Null (HRN) mice, in which POR is deleted specifically in hepatocytes, than in wild-type (WT) mice. In the present study we used human hepatoma HepG2 cells carrying a knockout (KO) in the POR gene as a human in vitro model that can mimic the HRN mouse model. Treatment to BaP for up to 48 h caused similar cytotoxicity in POR KO and WT HepG2 cells. However, levels of BaP activation (i.e. BaP-7,8-dihydrodiol formation) were higher in POR KO HepG2 cells than in WT HepG2 cells after 48 h. This also resulted in substantially higher BaP-DNA adduct formation in POR KO HepG2 cells indicating that BaP metabolism is delayed in POR KO HepG2 cells thereby prolonging the effective exposure of cells to unmetabolized BaP. As was seen in the HRN mouse model, these results suggest that cytochrome b5, another component of the mixed-function oxidase system, which can also serve as electron donor to CYP enzymes along with NADH:cytochrome b5 redutase, contributes to the bioactivation of BaP in POR KO HepG2 cells. Collectively, these findings indicate that CYPs play a more important role in BaP detoxication as opposed to activation.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos/toxicidade , Sistema Enzimático do Citocromo P-450/genética , Adutos de DNA/química , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/deficiência , Adutos de DNA/agonistas , Adutos de DNA/metabolismo , Dano ao DNA , Relação Dose-Resposta a Droga , Expressão Gênica , Técnicas de Inativação de Genes , Células Hep G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA