Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 30(2): 730-752, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31268532

RESUMO

Pyramidal neurons are the most common cell type and are considered the main output neuron in most mammalian forebrain structures. In terms of function, differences in the structure of the dendrites of these neurons appear to be crucial in determining how neurons integrate information. To further shed light on the structure of the human pyramidal neurons we investigated the geometry of pyramidal cells in the human and mouse CA1 region-one of the most evolutionary conserved archicortical regions, which is critically involved in the formation, consolidation, and retrieval of memory. We aimed to assess to what extent neurons corresponding to a homologous region in different species have parallel morphologies. Over 100 intracellularly injected and 3D-reconstructed cells across both species revealed that dendritic and axonal morphologies of human cells are not only larger but also have structural differences, when compared to mouse. The results show that human CA1 pyramidal cells are not a stretched version of mouse CA1 cells. These results indicate that there are some morphological parameters of the pyramidal cells that are conserved, whereas others are species-specific.


Assuntos
Região CA1 Hipocampal/citologia , Células Piramidais/citologia , Animais , Axônios , Dendritos , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Especificidade da Espécie
2.
J Proteome Res ; 18(3): 1175-1190, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30623656

RESUMO

Syrian hamsters undergo a reversible hyperphosphorylation of protein τ during hibernation, providing a unique natural model that may unveil the physiological mechanisms behind this critical process involved in the development of Alzheimer's disease and other tauopathies. The hibernation cycle of these animals fluctuates between a pair of stages: 3-4 days of torpor bouts interspersed with periods of euthermia called arousals that last several hours. In this study, we investigated for the first time the metabolic changes in brain tissue during hibernation. A total of 337 metabolites showed statistically significant differences during hibernation. Based on these metabolites, several pathways were found to be significantly regulated and, therefore, play a key role in the regulation of hibernation processes. The increase in the levels of ceramides containing more than 20 C atoms was found in torpor animals, reflecting a higher activity of CerS2 during hibernation, linked to neurofibrillary tangle generation and structural changes in the Golgi apparatus. Our results open up the debate about the possible significance of some metabolites during hibernation, which may possibly be related to τ phosphorylation and dephosphorylation events. In general, this study may provide insights into novel neuroprotective agents because the alterations described throughout the hibernation process are reversible.


Assuntos
Encéfalo/metabolismo , Hibernação/genética , Mesocricetus/metabolismo , Metabolômica/métodos , Animais , Encéfalo/fisiologia , Ceramidas/genética , Ceramidas/metabolismo , Cricetinae , Hibernação/fisiologia , Mesocricetus/fisiologia , Fosforilação/genética , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Cereb Cortex Commun ; 1(1): tgaa018, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34296096

RESUMO

The dendritic spines of pyramidal cells are the main postsynaptic target of excitatory glutamatergic synapses. Morphological alterations have been described in hippocampal dendritic spines during hibernation-a state of inactivity and metabolic depression that occurs via a transient neuronal tau hyperphosphorylation. Here, we have used the hibernating Syrian hamster to investigate the effect of hyperphosphorylated tau regarding neocortical neuronal structure. In particular, we examined layer Va pyramidal neurons. Our results indicate that hibernation does not promote significant changes in dendritic spine density. However, tau hyperphosphorylated neurons show a decrease in complexity, an increase in the tortuosity of the apical dendrites, and an increase in the diameter of the basal dendrites. Tau protein hyperphosphorylation and aggregation have been associated with loss or alterations of dendritic spines in neurodegenerative diseases, such as Alzheimer's disease (AD). Our results may shed light on the correlation between tau hyperphosphorylation and the neuropathological processes in AD. Moreover, we observed changes in the length and area of the apical and basal dendritic spines during hibernation regardless of tau hyperphosphorylation. The morphological changes observed here also suggest region specificity, opening up debate about a possible relationship with the differential brain activity registered in these regions in previous studies.

4.
J Alzheimers Dis ; 69(1): 277-288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958368

RESUMO

Despite extensive studies regarding tau phosphorylation progression in both human Alzheimer's disease cases and animal models, the molecular and structural changes responsible for neurofibrillary tangle development are still not well understood. Here, by using the antibodies AT100 (recognizes tau protein phosphorylated at Thr212 and Ser214 in the proline-rich region) and pS396 (recognizes tau protein phosphorylated at serine residue 396 in the C-terminal region), we examined phospho-tau immunostaining in neurons from the hippocampal CA1 region of 21 human cases with tau pathology ranging from Braak stage I to VI. Our results indicate that the AT100/pS396 ratio decreases in CA1 in accordance with the severity of the disease, along with its colocalization. We therefore propose the AT100/pS396 ratio as a new tool to analyze the tau pathology progression. Our findings also suggest a conformational modification in tau protein that may cause the disappearance of the AT100 epitope in the late stages of tau pathology, which may play a role in the toxic tangle aggregation. Thus, this study provides new insights underlying the stages for the formation of neurofibrillary tangles in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Região CA1 Hipocampal/metabolismo , Neurônios/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Região CA1 Hipocampal/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Neurônios/patologia , Fosforilação
5.
Brain Struct Funct ; 223(4): 1881-1895, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29260372

RESUMO

Mammalian hibernation proceeds alongside a wide range of complex brain adaptive changes that appear to protect the brain from extreme hypoxia and hypothermia. Using immunofluorescence, confocal microscopy, quantitative analysis methods and intracellular injections, we have characterized microglia morphological changes that occur in the neocortex and hippocampus of the Syrian hamster during hibernation. In euthermic hamsters, microglial cells showed the typical ramified/resting morphology with multiple long, thin and highly-branched processes homogeneously immunostained for Iba-1. However, during torpor, microglial cell process numbers increase significantly accompanied by a shortening of the Iba-1 immunoreactive processes, which show a fragmented appearance. Adaptative changes of microglial cells during torpor coursed with no expression of microglial cell activation markers. We discuss the possibility that these morphological changes may contribute to neuronal damage prevention during hibernation.


Assuntos
Hibernação/fisiologia , Hipocampo/citologia , Microglia/fisiologia , Neocórtex/citologia , Animais , Proteínas de Ligação ao Cálcio , Cricetinae , Citocinas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Hipocampo/diagnóstico por imagem , Infarto da Artéria Cerebral Média/patologia , Isoquinolinas/metabolismo , Masculino , Mesocricetus , Proteínas dos Microfilamentos , Microscopia Confocal , Neocórtex/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA