Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AMIA Jt Summits Transl Sci Proc ; 2017: 247-256, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815138

RESUMO

Computational methods for drug combination predictions are needed to identify effective therapies that improve durability and prevent drug resistance in an efficient manner. In this paper, we present SynGeNet, a computational method that integrates transcriptomics data characterizing disease and drug z-score profiles with network mining algorithms in order to predict synergistic drug combinations. We compare SynGeNet to other available transcriptomics-based tools to predict drug combinations validated across melanoma cell lines in three genotype groups: BRAF-mutant, NRAS-mutant and combined. We showed that SynGeNet outperforms other available tools in predicting validated drug combinations and single agents tested as part of additional drug pairs. Interestingly, we observed that the performance of SynGeNet decreased when the network construction step was removed and improved when the proportion of matched-genotype validation cell lines increased. These results suggest that delineating functional information from transcriptomics data via network mining and genomic features can improve drug combination predictions.

2.
Onco Targets Ther ; 9: 5931-5941, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27729802

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are short noncoding RNAs that function to repress translation of mRNA transcripts and contribute to the development of cancer. We hypothesized that miRNA array-based technologies work best for miRNA profiling of patient-derived plasma samples when the techniques and patient populations are precisely defined. METHODS: Plasma samples were obtained from five sources: melanoma clinical trial of interferon and bortezomib (12), purchased normal donor plasma samples (four), gastrointestinal tumor bank (nine), melanoma tumor bank (ten), or aged-matched normal donors (eight) for the tumor bank samples. Plasma samples were purified for miRNAs and quantified using NanoString® arrays or by the company Exiqon. Standard biostatistical array approaches were utilized for data analysis and compared to a rank-based analytical approach. RESULTS: With the prospectively collected samples, fewer plasma samples demonstrated visible hemolysis due to increased attention to eliminating factors, such as increased pressure during phlebotomy, small gauge needles, and multiple punctures. Cancer patients enrolled in a melanoma clinical study exhibited the clearest pattern of miRNA expression as compared to normal donors in both the rank-based analytical method and standard biostatistical array approaches. For the patients from the tumor banks, fewer miRNAs (<5) were found to be differentially expressed and the false positive rate was relatively high. CONCLUSION: In order to obtain consistent results for NanoString miRNA arrays, it is imperative that patient cohorts have similar clinical characteristics with a uniform sample preparation procedure. A clinical workflow has been optimized to collect patient samples to study plasma miRNAs.

3.
J Am Med Inform Assoc ; 20(4): 619-29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23355459

RESUMO

BACKGROUND: While genome-wide association studies (GWAS) of complex traits have revealed thousands of reproducible genetic associations to date, these loci collectively confer very little of the heritability of their respective diseases and, in general, have contributed little to our understanding the underlying disease biology. Physical protein interactions have been utilized to increase our understanding of human Mendelian disease loci but have yet to be fully exploited for complex traits. METHODS: We hypothesized that protein interaction modeling of GWAS findings could highlight important disease-associated loci and unveil the role of their network topology in the genetic architecture of diseases with complex inheritance. RESULTS: Network modeling of proteins associated with the intragenic single nucleotide polymorphisms of the National Human Genome Research Institute catalog of complex trait GWAS revealed that complex trait associated loci are more likely to be hub and bottleneck genes in available, albeit incomplete, networks (OR=1.59, Fisher's exact test p < 2.24 × 10(-12)). Network modeling also prioritized novel type 2 diabetes (T2D) genetic variations from the Finland-USA Investigation of Non-Insulin-Dependent Diabetes Mellitus Genetics and the Wellcome Trust GWAS data, and demonstrated the enrichment of hubs and bottlenecks in prioritized T2D GWAS genes. The potential biological relevance of the T2D hub and bottleneck genes was revealed by their increased number of first degree protein interactions with known T2D genes according to several independent sources (p<0.01, probability of being first interactors of known T2D genes). CONCLUSION: Virtually all common diseases are complex human traits, and thus the topological centrality in protein networks of complex trait genes has implications in genetics, personal genomics, and therapy.


Assuntos
Estudo de Associação Genômica Ampla , Modelos Genéticos , Mapas de Interação de Proteínas/genética , Biologia Computacional/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA