Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Med Genet B Neuropsychiatr Genet ; 147B(7): 1152-8, 2008 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-18348195

RESUMO

A susceptibility locus for autism was identified to the chromosome 2q24-q33 region in independent cohorts of families, especially in subsets clinically defined with phrase speech delay (PSD). In the present work, we screened 84 linkage-informative SNPs covering this locus in a cohort of 334 families with autism and in subsets identified with PSD. We observed linkage to autism with the highest non-parametric linkage score (NPL) of 2.79 (P = 0.002) in the PSD subset with at least two affected subjects. In addition, using a set of 109 additional gene-oriented SNPs in this interval we observed that several SNPs encompassing the SLC25A12 gene provided the maximum evidence for linkage (NPL = 3.32, P = 0.0003). Using the transmission disequilibrium test to test for associations, we observed significant over-transmissions of rs2056202 (P = 0.006) within the SLC25A12 gene, rs1807984 (P = 0.007) within the STK39 gene, and rs2305586 (P = 0.009) within the ITGA4 gene. We also found evidence for association between autism and two other SNPs (rs1517342, P = 0.012 and rs971257, P = 0.030) or haplotypes (P = 0.003) of the STK39 gene. STK39 encodes a serine/threonine kinase (SPAK/PASK/STE20-SPS1 homolog) abundantly expressed in the brain with roles in cell differentiation, cell transformation and proliferation, and in regulation of ion transporters. In summary, we have observed further evidence for linkage and association between autism and loci within the 2q24-q33 region, including at STK39, a novel candidate gene for autism.


Assuntos
Transtorno Autístico/genética , Cromossomos Humanos Par 2/genética , Ligação Genética , Predisposição Genética para Doença , Proteínas Serina-Treonina Quinases/genética , Estudos de Coortes , Saúde da Família , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único
2.
Biol Psychiatry ; 60(2): 186-91, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16616719

RESUMO

BACKGROUND: The serotonin transporter (5-HTT) has long been considered likely to play a role in autism. Hyperserotonemia has been consistently found in a proportion of autistic patients, and the use of selective serotonin reuptake inhibitors (SSRIs) can have a positive effect in treating some symptoms of autism. Specific variants of the 5-HTT gene, SLC6A4, especially the insertion-deletion 5-HTTLPR promoter locus, have been found to modulate its expression and transporter function. METHODS: We examined the transmission of the short or long allele of 5-HTTLPR locus to affected individuals, using a large cohort of 352 families. In addition, we screened five single nucleotide polymorphisms (SNPs) in the 5' region of SLC6A4 previously reported to be positively associated with autism, as well as 4 additional SNPs also in the 5' region. RESULTS: No association of the 5-HTTLPR locus with autism was found. Furthermore, no evidence for association of any of the nine SNPs covering the SLC6A4 gene, or any of their haplotypes, was observed in our study. Using obsessive-compulsive behaviors (OCB), severe OCBs or rigid-compulsive subsets of our cohort gave the same negative results. CONCLUSIONS: SLC6A4 variants do not appear to be significantly involved in the liability to autism.


Assuntos
Transtorno Autístico/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Estudos de Coortes , Comportamento Compulsivo/genética , DNA/genética , Marcadores Genéticos , Genótipo , Humanos , Desequilíbrio de Ligação , Transtorno Obsessivo-Compulsivo/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
3.
Psychiatr Genet ; 16(1): 19-23, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16395125

RESUMO

OBJECTIVE: Autism has been linked to a broad region on chromosome 7q that contains a large number of genes involved in transcription and development. This region is also enriched for ultraconserved non-coding elements, defined as human-rodent sequences that are 100% aligned over > or =200 base pairs, which have a high likelihood of being functional. Therefore, as only a few rare coding variants have been detected in the autism candidate genes on 7q examined to date, we decided to screen these ultraconserved elements for possible autism susceptibility alleles. METHODS: We used denaturing high-performance liquid chromatography, and DNA sequencing, to perform variant detection in a total of 146 cases with autism, 96 from the Autism Genetic Resource Exchange and 50 from the Central Valley of Costa Rica, as well as 124 controls from the Polymorphism Discovery Resource Panel. We screened 10 consecutive ultraconserved elements in, or flanking, the genes DLX5/6, AUTS2 and FOXP2 on chromosome 7q. RESULTS: Although we did find several rare variants in autism cases that were not present in controls, we also observed rare variants present in controls and not cases. The most common variant occurred in controls at a frequency of 3.3%. Interestingly, two ultraconserved elements each harbored three independent variants and one ultraconserved element harbored two independent variants, suggesting that ultraconservation is maintained chiefly by a decreased tendency toward fixation, rather than a significantly lower mutation rate. CONCLUSIONS: Our results show that these sequences are unlikely to harbor major autism susceptibility alleles.


Assuntos
Transtorno Autístico/genética , Cromossomos Humanos Par 7 , Sequência de Bases , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , DNA , Primers do DNA , Elementos Facilitadores Genéticos , Ligação Genética , Proteínas de Homeodomínio/genética , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNA , Fatores de Transcrição/genética
4.
Psychiatr Genet ; 16(6): 251-7, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17106428

RESUMO

OBJECTIVES: An autism susceptibility locus (AUTS1, MIM#608636) has been identified in chromosome 7q31. NrCAM is a candidate gene for AUTS1 because it is expressed in the brain and encodes a receptor involved in nervous system development. Polymorphisms in NrCAM have been reported to be associated with autism susceptibility and with substance abuse, implicating NrCAM in reward circuitry. Self-stimulatory, perseverative behavior in autism might be due to defects in reward circuitry. In addition, models of drug addiction have also borrowed from models of obsessive-compulsive behavior designed to reduce anxiety. Thus, our goals were to replicate previous associations of NrCAM with autism, making use of a large cohort, and to clarify whether NrCAM was associated with a specific endophenotype of autism in the repetitive behaviors and stereotyped interests domains. METHODS: We genotyped six NrCAM single nucleotide polymorphisms in 352 families and we tested for association between these polymorphisms and autism in the entire cohort and in two subsets, one with severe obsessive-compulsive behaviors and one with pronounced self-stimulatory behaviors. RESULTS: We found no association between single nucleotide polymorphisms of NrCAM and autism in our large cohort, or in the severe obsessive-compulsive behavior and self-stimulatory behavior subsets. However, we observed a significant overtransmission (21 transmitted vs 6 nontransmitted, chi2=12.054, P=0.0005) of the haplotype G-G-A-G-C-A of rs722519-rs1269622-rs405945-rs6958498-rs401433-rs439587 in the severe obsessive-compulsive behavior subset, likely driven by the G-C haplotype of rs6958498-rs401433, which itself showed significant overtransmission (31 transmitted vs 13 nontransmitted, chi2=8.844, P=0.003). CONCLUSIONS: Overtransmission of particular haplotypes of NrCAM, that may relate to the expression level of NrCAM in the brain, appeared to be associated with autism in the severe obsessive-compulsive behavior subset.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular/genética , Transtorno Obsessivo-Compulsivo/genética , Transtorno Autístico/psicologia , Estudos de Coortes , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único
5.
Am J Psychiatry ; 161(4): 662-9, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15056512

RESUMO

OBJECTIVE: Autism/autistic disorder (MIM number 209850) is a complex, largely genetic psychiatric disorder. The authors recently mapped a susceptibility locus for autism to chromosome region 2q24-q33 (MIM number 606053). In the present study, genes across the 2q24-q33 interval were analyzed to identify an autism susceptibility gene in this region. METHOD: Mutation screening of positional candidate genes was performed in two stages. The first stage involved identifying, in unrelated subjects showing linkage to 2q24-q33, genetic variants in exons and flanking sequence within candidate genes and comparing the frequency of the variants between autistic and unrelated nonautistic subjects. Two single nucleotide polymorphisms (SNPs) that showed evidence for divergent distribution between autistic and nonautistic subjects were identified, both within SLC25A12, a gene encoding the mitochondrial aspartate/glutamate carrier (AGC1). In the second stage, the two SNPs in SLC25A12 were further genotyped in 411 autistic families, and linkage and association tests were carried out in the 197 informative families. RESULTS: Linkage and association were observed between autistic disorder and the two SNPs, rs2056202 and rs2292813, found in SLC25A12. Using either a single affected subject per family or all affected subjects, evidence for excess transmission was found by the Transmission Disequilibrium Test for rs2056202, rs2292813, and a two-locus G*G haplotype. Similar results were observed using TRANSMIT for the analyses. Evidence for linkage was supported by linkage analysis with the two SNPs, with a maximal multipoint nonparametric linkage score of 1.57 and a maximal multipoint heterogeneity lod score of 2.11. Genotype relative risk could be estimated to be between 2.4 and 4.8 for persons homozygous at these loci. CONCLUSIONS: A strong association of autism with SNPs within the SLC25A12 gene was demonstrated. Further studies are needed to confirm this association and to decipher any potential etiological role of AGC1 in autism.


Assuntos
Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Transtorno Autístico/genética , DNA Mitocondrial/genética , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas Mitocondriais/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 2/genética , Análise Mutacional de DNA , Ligação Genética/genética , Predisposição Genética para Doença , Genótipo , Haplótipos/genética , Humanos , Proteínas de Transporte da Membrana Mitocondrial , Mutação Puntual/genética , Polimorfismo Genético/genética
6.
BMC Med Genomics ; 1: 50, 2008 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-18925931

RESUMO

BACKGROUND: It has previously been shown that specific microdeletions and microduplications, many of which also associated with cognitive impairment (CI), can present with autism spectrum disorders (ASDs). Multiplex ligation-dependent probe amplification (MLPA) represents an efficient method to screen for such recurrent microdeletions and microduplications. METHODS: In the current study, a total of 279 unrelated subjects ascertained for ASDs were screened for genomic disorders associated with CI using MLPA. Fluorescence in situ hybridization (FISH), quantitative polymerase chain reaction (Q-PCR) and/or direct DNA sequencing were used to validate potential microdeletions and microduplications. Methylation-sensitive MLPA was used to characterize individuals with duplications in the Prader-Willi/Angelman (PWA) region. RESULTS: MLPA showed two subjects with typical ASD-associated interstitial duplications of the 15q11-q13 PWA region of maternal origin. Two additional subjects showed smaller, de novo duplications of the PWA region that had not been previously characterized. Genes in these two novel duplications include GABRB3 and ATP10A in one case, and MKRN3, MAGEL2 and NDN in the other. In addition, two subjects showed duplications of the 22q11/DiGeorge syndrome region. One individual was found to carry a 12 kb deletion in one copy of the ASPA gene on 17p13, which when mutated in both alleles leads to Canavan disease. Two subjects showed partial duplication of the TM4SF2 gene on Xp11.4, previously implicated in X-linked non-specific mental retardation, but in our subsequent analyses such variants were also found in controls. A partial duplication in the ASMT gene, located in the pseudoautosomal region 1 (PAR1) of the sex chromosomes and previously suggested to be involved in ASD susceptibility, was observed in 6-7% of the cases but in only 2% of controls (P = 0.003). CONCLUSION: MLPA proves to be an efficient method to screen for chromosomal abnormalities. We identified duplications in 15q11-q13 and in 22q11, including new de novo small duplications, as likely contributing to ASD in the current sample by increasing liability and/or exacerbating symptoms. Our data indicate that duplications in TM4SF2 are not associated with the phenotype given their presence in controls. The results in PAR1/PAR2 are the first large-scale studies of gene dosage in these regions, and the findings at the ASMT locus indicate that further studies of the duplication of the ASMT gene are needed in order to gain insight into its potential involvement in ASD. Our studies also identify some limitations of MLPA, where single base changes in probe binding sequences alter results. In summary, our studies indicate that MLPA, with a focus on accepted medical genetic conditions, may be an inexpensive method for detection of microdeletions and microduplications in ASD patients for purposes of genetic counselling if MLPA-identified deletions are validated by additional methods.

7.
Am J Med Genet B Neuropsychiatr Genet ; 141B(8): 861-7, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-16958027

RESUMO

The TPH1 and TPH2 genes encode the rate-limiting enzymes that control serotonin biosynthesis, and serotonin is clearly altered in autism. In the current study, eight SNPs in the TPH1 gene region and eight SNPs within the TPH2 gene were examined by family-based association tests in a large cohort of 352 families with autism and in clinically defined subsets of these families with either severe obsessive-compulsive behaviors (sOCB) or self-stimulatory behaviors (SSB). We found no evidence for association between autism and single SNPs or haplotypes of the TPH1 and TPH2 genes in the cohort of all families or in the sOCB and SSB subsets. In particular, we failed to replicate the association between autism and variants of the TPH2 gene, rs4341581 (TRANSMIT P = 1; PDT P = 0.323; FBAT P = 0.446) and rs11179000 (TRANSMIT P = 0.174; PDT P = 0.293; FBAT P = 0.374). Furthermore, no evidence for linkage was observed between autism and SNPs in the TPH1 and TPH2 genes (although linkage at the TPH2 locus was observed in the SSB subset). Thus, it appears unlikely that the TPH1 and TPH2 genes play a significant role in the susceptibility to autism or to autism endophenotypes including sOCB and SSB.


Assuntos
Transtorno Autístico/genética , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 12/genética , Transtorno Obsessivo-Compulsivo/genética , Polimorfismo Genético , Triptofano Hidroxilase/genética , Saúde da Família , Componentes do Gene , Genética Populacional , Haplótipos/genética , Humanos , Desequilíbrio de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA