Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Drugs Ther ; 32(5): 503-510, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097828

RESUMO

PURPOSE: Perivascular adipose tissue (PVAT) surrounds the arterial adventitia and plays an important role in vascular homeostasis. PVAT expands in obesity, and inflamed PVAT can locally promote endothelial dysfunction and atherosclerosis. Here, using adipose tissue transplantation, we tested the hypothesis that expansion of PVAT can also remotely exacerbate vascular disease. METHODS: Fifty milligrams of abdominal aortic PVAT was isolated from high-fat diet (HFD)-fed wild-type mice and transplanted onto the abdominal aorta of lean LDL receptor knockout mice. Subcutaneous and visceral adipose tissues were used as controls. After HFD feeding for 10 weeks, body weight, glucose/insulin sensitivity, and lipid levels were measured. Adipocytokine gene expression was assessed in the transplanted adipose tissues, and the thoracic aorta was harvested to quantify atherosclerotic lesions by Oil-Red O staining and to assess vasorelaxation by wire myography. RESULTS: PVAT transplantation did not influence body weight, fat composition, lipid levels, or glucose/insulin sensitivity. However, as compared with controls, transplantation of PVAT onto the abdominal aorta increased thoracic aortic atherosclerosis. Furthermore, PVAT transplantation onto the abdominal aorta inhibited endothelium-dependent relaxation in the thoracic aorta. MCP-1 and TNF-α expression was elevated, while adiponectin expression was reduced, in the transplanted PVAT tissue, suggesting augmented inflammation as a potential mechanism for the remote vascular effects of transplanted PVAT. CONCLUSIONS: These data suggest that PVAT expansion and inflammation in obesity can remotely induce endothelial dysfunction and augment atherosclerosis. Identifying the underlying mechanisms may lead to novel approaches for risk assessment and treatment of obesity-related vascular disease.


Assuntos
Tecido Adiposo Branco/transplante , Aorta Abdominal/metabolismo , Aorta Abdominal/cirurgia , Aorta Torácica/metabolismo , Aterosclerose/metabolismo , Comunicação Parácrina , Placa Aterosclerótica , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Aorta Abdominal/patologia , Aorta Abdominal/fisiopatologia , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Vasodilatação
2.
Vet Radiol Ultrasound ; 53(1): 34-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22093112

RESUMO

High-resolution computed tomography (CT) is the preferred noninvasive tool for diagnosing bronchiectasis in people. A criterion for evaluating dilation of the bronchus is the bronchial lumen to pulmonary artery diameter (bronchoarterial ratio [BA ratio]). A ratio of > 1.0 in humans or > 2.0 in dogs has been suggested as a threshold for identifying bronchiectasis. The purpose of this study was to establish the BA ratio in normal cats. Fourteen specific pathogen-free cats were selected for analysis of thoracic CT images. The BA ratios of the lobar bronchi of the left cranial (cranial and caudal parts), right cranial, right middle, left caudal, and right caudal lung lobes were measured. The mean of the mean BA ratio of all lung lobes was 0.71 +/- 0.05. Individual BA ratios ranged from 0.5 to 1.11. Comparing individual lobes for each cat, there was no significant difference (P = 0.145) in mean BA ratio between lung lobes. A mean BA ratio for these normal cats was 0.71 +/- 0.1, which suggests an upper cut-off normal value > 0.91 (mean +/- 2 standard deviations) between normal and abnormal cats.


Assuntos
Broncografia/veterinária , Gatos/anatomia & histologia , Artéria Pulmonar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/veterinária , Anestesia Intravenosa/veterinária , Animais , Pulmão/diagnóstico por imagem , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA