Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 79(1): 59-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26456231

RESUMO

OBJECTIVE: To examine whether near-infrared light (NIr) treatment reduces clinical signs and/or offers neuroprotection in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of Parkinson disease. METHODS: We implanted an optical fiber device that delivered NIr (670 nm) to the midbrain of macaque monkeys, close to the substantia nigra of both sides. MPTP injections (1.5-2.1mg/kg) were made over a 5- to 7-day period, during which time the NIr device was turned on. This was then followed by a 3-week survival period. Monkeys were evaluated clinically (eg, posture, bradykinesia) and behaviorally (open field test), and their brains were processed for immunohistochemistry and stereology. RESULTS: All monkeys in the MPTP group developed severe clinical and behavioral impairment (mean clinical scores = 21-34; n = 11). By contrast, the MPTP-NIr group developed much less clinical and behavioral impairment (n = 9); some monkeys developed moderate clinical signs (mean scores = 11-15; n = 3), whereas the majority--quite remarkably--developed few clinical signs (mean scores = 1-6; n = 6). The monkeys that developed moderate clinical signs had hematic fluid in their optical fibers at postmortem, presumably limiting NIr exposure and overall clinical improvement. NIr was not toxic to brain tissue and offered neuroprotection to dopaminergic cells and their terminations against MPTP insult, particularly in animals that developed few clinical signs. INTERPRETATION: Our findings indicate NIr to be an effective therapeutic agent in a primate model of the disease and create the template for translation into clinical trials.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Comportamento Animal/efeitos da radiação , Raios Infravermelhos/uso terapêutico , Intoxicação por MPTP/prevenção & controle , Mesencéfalo/efeitos da radiação , Neurotoxinas/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/fisiopatologia , Macaca fascicularis , Masculino , Mesencéfalo/efeitos dos fármacos , Neurotoxinas/administração & dosagem , Fibras Ópticas
2.
Exp Brain Res ; 235(6): 1861-1874, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28299414

RESUMO

Intracranial application of red to infrared light, known also as photobiomodulation (PBM), has been shown to improve locomotor activity and to neuroprotect midbrain dopaminergic cells in rodent and monkey models of Parkinson's disease. In this study, we explored whether PBM has any influence on the number of tyrosine hydroxylase (TH)+cells and the expression of GDNF (glial-derived neurotrophic factor) in the striatum. Striatal sections of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-treated mice and monkeys and 6-hydroxydopamine (6OHDA)-lesioned rats that had PBM optical fibres implanted intracranially (or not) were processed for immunohistochemistry (all species) or western blot analysis (monkeys). In our MPTP monkey model, which showed a clear loss in striatal dopaminergic terminations, PBM generated a striking increase in striatal TH+ cell number, 60% higher compared to MPTP monkeys not treated with PBM and 80% higher than controls. This increase was not evident in our MPTP mouse and 6OHDA rat models, both of which showed minimal loss in striatal terminations. In monkeys, the increase in striatal TH+ cell number in MPTP-PBM cases was accompanied by similar increases in GDNF expression, as determined from western blots, from MPTP and control cases. In summary, these results offer insights into the mechanisms by which PBM generates its beneficial effects, potentially with the use of trophic factors, such as GDNF.


Assuntos
Núcleo Caudado/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Terapia com Luz de Baixa Intensidade/métodos , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/terapia , Putamen/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Contagem de Células , Modelos Animais de Doenças , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Wistar
3.
Exp Brain Res ; 234(7): 1787-1794, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26879772

RESUMO

We have shown previously that near-infrared light (NIr), when applied at the same time as a parkinsonian insult (e.g. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MPTP), reduces behavioural deficits and offers neuroprotection. Here, we explored whether the timing of NIr intervention-either before, at the same time or after the MPTP insult-was important. Mice received MPTP injections (total of 50 mg/kg) and, at various stages in relation to these injections, extracranial application of NIr. Locomotor activity was tested with an open-field test, and brains were processed for immunohistochemistry. Our results showed that regardless of when NIr was applied in relation to MPTP insult, behavioural impairment was reduced by a similar magnitude. The beneficial effect of NIr was fast-acting (within minutes) and long-lasting (for several days). There were more dopaminergic cells in the NIr-treated MPTP groups than in the MPTP group; there was no clear indication that a particular combination of NIr treatment and MPTP injection resulted in a higher cell number. In summary, irrespective of whether it was applied before, at the same time as or after MPTP insult, NIr reduced both behavioural and structural measures of damage by a similar magnitude. There was a broad therapeutic time window of NIr application in relation to the stage of toxic insult, and the NIr was fast-acting and long-lasting.


Assuntos
Comportamento Animal/efeitos da radiação , Raios Infravermelhos/uso terapêutico , Intoxicação por MPTP/terapia , Atividade Motora/efeitos da radiação , Fototerapia/métodos , Animais , Modelos Animais de Doenças , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo
4.
Int J Neurosci ; 126(1): 76-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25469453

RESUMO

We have used the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model to explore whether (i) the neuroprotective effect of near infrared light (NIr) treatment in the SNc is dose-dependent and (ii) the relationship between tyrosine hydroxylase (TH)+ terminal density and glial cells in the caudate-putamen complex (CPu). Mice received MPTP injections (50 mg/kg) and 2 J/cm2 NIr dose with either 2 d or 7 d survival period. In another series, with a longer 14 d survival period, mice had a stronger MPTP regime (100 mg/kg) and either 2 J/cm2 or 4 J/cm2 NIr dose. Brains were processed for routine immunohistochemistry and cell counts were made using stereology. Our findings were that in the 2 d series, no change in SNc TH+ cell number was evident after any treatment. In the 7 d series however, MPTP insult resulted in ∼45% reduction in TH+ cell number; after NIr (2 J/cm2) treatment, many cells were protected from the toxic insult. In the 14 d series, MPTP induced a similar reduction in TH+ cell number. NIr mitigated the loss of TH+ cells, but only at the higher dose of 4 J/cm2; the lower dose of 2 J/cm2 had no neuroprotective effect in this series. The higher dose of NIr, unlike the lower dose, also mitigated the MPTP- induced increase in CPu astrocytes after 14 d; these changes were independent of TH+ terminal density, of which, did not vary across the different experimental groups. In summary, we showed that neuroprotection by NIr irradiation in MPTP-treated mice was dose-dependent; with increasing MPTP toxicity, higher doses of NIr were required to protect cells and reduce astrogliosis.


Assuntos
Neurônios Dopaminérgicos/efeitos da radiação , Gliose/radioterapia , Raios Infravermelhos/uso terapêutico , Intoxicação por MPTP/radioterapia , Transtornos Parkinsonianos/radioterapia , Parte Compacta da Substância Negra/efeitos da radiação , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Astrócitos/patologia , Astrócitos/efeitos da radiação , Núcleo Caudado/patologia , Núcleo Caudado/efeitos da radiação , Contagem de Células , Sobrevivência Celular/efeitos da radiação , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Gliose/patologia , Terapia com Luz de Baixa Intensidade , Intoxicação por MPTP/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/análise , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/patologia , Putamen/patologia , Putamen/efeitos da radiação , Tirosina 3-Mono-Oxigenase/análise
5.
Front Immunol ; 13: 929837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874678

RESUMO

Background: Because the major event in COVID-19 is the release of pre- and inflammatory cytokines, finding a reliable therapeutic strategy to inhibit this release, help patients manage organ damage and avoid ICU admission or severe disease progression is of paramount importance. Photobiomodulation (PBM), based on numerous studies, may help in this regard, and the present study sought to evaluate the effects of said technology on cytokine reduction. Methods: This study was conducted in the 2nd half of 2021. The current study included 52 mild-to-moderately ill COVID-19, hospitalized patients. They were divided in two groups: a Placebo group and a PBM group, treated with PBM (620-635 nm light via 8 LEDs that provide an energy density of 45.40 J/cm2 and a power density of 0.12 W/cm2), twice daily for three days, along with classical approved treatment. 28 patients were in Placebo group and 24 in PBM group. In both groups, blood samples were taken four times in three days and serum IL-6, IL-8, IL-10, and TNF-α levels were determined. Results: During the study period, in PBM group, there was a significant decrease in serum levels of IL-6 (-82.5% +/- 4, P<0.001), IL-8 (-54.4% ± 8, P<0.001), and TNF-α (-82.4% ± 8, P<0.001), although we did not detect a significant change in IL-10 during the study. The IL-6/IL-10 Ratio also improved in PBM group. The Placebo group showed no decrease or even an increase in these parameters. There were no reported complications or sequelae due to PBM therapy throughout the study. Conclusion: The major cytokines in COVID-19 pathophysiology, including IL-6, IL-8, and TNF-α, responded positively to PBM therapy and opened a new window for inhibiting and managing a cytokine storm within only 3-10 days.


Assuntos
COVID-19 , Citocinas , Humanos , Interleucina-10 , Interleucina-6 , Interleucina-8 , Projetos Piloto , Fator de Necrose Tumoral alfa
6.
Neurosci Res ; 117: 42-47, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27871905

RESUMO

We have shown previously that when applied separately, 670nm and 810nm near infrared light (NIr) reduces behavioural deficits and offers neuroprotection in a MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson's disease. Here, we explored the beneficial outcomes when these NIr wavelengths were applied both together, either concurrently (at the same time) or sequentially (one after the other). Mice received MPTP injections (total of 50mg/kg) and had extracranial application of 670nm and/or 810nm NIr. Behavioural activity was tested with an open-field test and brains were processed for tyrosine hydroxylase immunohistochemistry and stereology. Our results showed that when 670nm and 810nm NIr were applied both together and sequentially, there was a greater overall beneficial outcome - increased locomotor activity and number of tyrosine hydroxylase immunoreactive cells in the substantia nigra pars compacta - than when they were applied either separately, or in particular, both together and concurrently. In summary, our findings have important implications for future use of NIr therapy in humans, that there are some combinations of wavelengths that provide more beneficial outcome than others.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Luz , Terapia com Luz de Baixa Intensidade , Camundongos Endogâmicos BALB C , Transtornos Parkinsonianos/induzido quimicamente , Substância Negra/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
7.
J Neurosurg ; 124(6): 1829-41, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26613166

RESUMO

OBJECT The authors of this study used a newly developed intracranial optical fiber device to deliver near-infrared light (NIr) to the midbrain of 6-hydroxydopamine (6-OHDA)-lesioned rats, a model of Parkinson's disease. The authors explored whether NIr had any impact on apomorphine-induced turning behavior and whether it was neuroprotective. METHODS Two NIr powers (333 nW and 0.16 mW), modes of delivery (pulse and continuous), and total doses (634 mJ and 304 J) were tested, together with the feasibility of a midbrain implant site, one considered for later use in primates. Following a striatal 6-OHDA injection, the NIr optical fiber device was implanted surgically into the midline midbrain area of Wistar rats. Animals were tested for apomorphine-induced rotations, and then, 23 days later, their brains were aldehyde fixed for routine immunohistochemical analysis. RESULTS The results showed that there was no evidence of tissue toxicity by NIr in the midbrain. After 6-OHDA lesion, regardless of mode of delivery or total dose, NIr reduced apomorphine-induced rotations at the stronger, but not at the weaker, power. The authors found that neuroprotection, as assessed by tyrosine hydroxylase expression in midbrain dopaminergic cells, could account for some, but not all, of the observed behavioral improvements; the groups that were associated with fewer rotations did not all necessarily have a greater number of surviving cells. There may have been other "symptomatic" elements contributing to behavioral improvements in these rats. CONCLUSIONS In summary, when delivered at the appropriate power, delivery mode, and dosage, NIr treatment provided both improved behavior and neuroprotection in 6-OHDA-lesioned rats.


Assuntos
Mesencéfalo/fisiopatologia , Mesencéfalo/efeitos da radiação , Transtornos Parkinsonianos/fisiopatologia , Transtornos Parkinsonianos/terapia , Fototerapia/métodos , Animais , Apomorfina/farmacologia , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/efeitos da radiação , Relação Dose-Resposta à Radiação , Estudos de Viabilidade , Imuno-Histoquímica , Terapia com Luz de Baixa Intensidade , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/patologia , Movimento/efeitos dos fármacos , Movimento/efeitos da radiação , Fibras Ópticas/efeitos adversos , Oxidopamina , Transtornos Parkinsonianos/patologia , Fototerapia/efeitos adversos , Fototerapia/instrumentação , Próteses e Implantes/efeitos adversos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Neurosci Res ; 92: 86-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25462595

RESUMO

We explored whether 810nm near-infrared light (NIr) offered neuroprotection and/or improvement in locomotor activity in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease. Mice received MPTP and 810nm NIr treatments, or not, and were tested for locomotive activity in an open-field test. Thereafter, brains were aldehyde-fixed and processed for tyrosine hydroxylase immunohistochemistry. Our results showed that MPTP-treated mice that were irradiated with 810nm NIr had both greater locomotor activity (∼40%) and number of dopaminergic cells (∼20%) than those that were not. In summary, 810nm (as with 670nm) NIr offered neuroprotection and improved locomotor activity in MPTP-treated mice.


Assuntos
Neurônios Dopaminérgicos/efeitos da radiação , Raios Infravermelhos , Atividade Motora/efeitos da radiação , Transtornos Parkinsonianos/radioterapia , Parte Compacta da Substância Negra/efeitos da radiação , Animais , Contagem de Células , Neurônios Dopaminérgicos/metabolismo , Terapia com Luz de Baixa Intensidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transtornos Parkinsonianos/metabolismo , Parte Compacta da Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA