Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Protein Expr Purif ; 72(2): 254-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20176108

RESUMO

NF-kappaB signaling plays a pivotal role in a variety of pathological conditions. Because of its central role in the overall NF-kappaB regulation, IKK-2 is a viable target for drug discovery. In order to enable structure-based design of IKK-2 inhibitors, we carried out a rational generation of IKK-2 mutants based on induced-fit docking of a selective IKK-2 inhibitor, PHA-408, into the homology model of IKK-2. One mutant we have characterized is a catalytically inactive form of IKK-2, D145A IKK-2, wherein the catalytic aspartic acid, D145 was replaced with alanine. Unlike the WT enzyme, D145A IKK-2 is devoid of kinase activity despite its ability to bind ATP with high affinity and is not phosphorylated at the T loop. In addition, this mutant binds a diverse collection of inhibitors with comparable binding affinities to WT IKK-2. Another interesting mutant we have characterized is F26A IKK-2 (F26 is an aromatic residue located at the very tip of the Gly-rich loop). Pre-incubation of F26A IKK-2 with PHA-408 revealed the role of F26 in the time-dependent binding of this inhibitor. Thus, functional characterization of these mutants provides the first evidence showing the role of a Gly-rich loop residue of a kinase in binding kinetics. These two mutants along with others that we have identified could be used to validate homology models and probe the interactions of IKK-2 with a variety of inhibitors.


Assuntos
Quinase I-kappa B/metabolismo , Animais , Células Cultivadas , Simulação por Computador , Descoberta de Drogas/métodos , Humanos , Quinase I-kappa B/biossíntese , Quinase I-kappa B/química , Quinase I-kappa B/genética , Indazóis/química , Indazóis/metabolismo , Ácidos Isonicotínicos/química , Ácidos Isonicotínicos/metabolismo , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Spodoptera , Homologia Estrutural de Proteína
3.
Drug Metab Dispos ; 37(10): 1987-90, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19635782

RESUMO

Mammalian flavin-containing monooxygenase (FMO) enzymes catalyze oxidation at nucleophilic, heteroatom centers and are important for drug, xenobiotic, and endogenous substrate metabolism. In human liver, human FMO3 (hFMO3) is the most abundant FMO isoform and is known to contribute to the hepatic clearance of a variety of clinical drugs. The purpose of the current study was to express and compare the dog (beagle) FMO3 (dFMO3) to hFMO3. A full-length dFMO3 cDNA was obtained from liver by reverse transcription-polymerase chain reaction. Using a baculovirus expression system in Spodoptera frugiperda insect cells, dFMO3 was expressed to protein levels of 0.50 nmol/mg, as determined by liquid chromatography-fluorescence detection. Expressed dFMO3 displayed Michaelis-Menten kinetics, catalyzing NADPH-dependent N-oxidation of benzydamine, with K(m) and V(max) values of 18.6 microM and 0.63 nmol N-oxide formed/min/nmol of enzyme, respectively. Benzydamine N-oxidation catalyzed by hFMO3 showed values of 42.6 microM (K(m)) and 3.56 nmol/min/nmol of enzyme (V(max)). Human FMO3 was observed to catalyze the S-oxidation of sulindac sulfide, with respective K(m) and V(max) values of 69.3 microM and 35.4 nmol/min/nmol of enzyme. dFMO3 also catalyzed sulindac sulfide S-oxidation with 6.8 nmol/min/nmol of enzyme being the highest velocity observed. Finally, Western blot analysis indicated protein expression levels of dFMO3 in pooled dog liver and lung microsomes to be 27 and 9 pmol/mg, respectively. In summary, dFMO3 appears to be a functional enzyme expressed at appreciable levels in liver, but one with some kinetic properties that are substantially different from its human homolog hFMO3.


Assuntos
DNA Complementar/metabolismo , Microssomos Hepáticos/enzimologia , Oxigenases/metabolismo , Animais , Células Cultivadas , Clonagem Molecular , DNA Complementar/genética , Cães , Feminino , Expressão Gênica , Variação Genética , Humanos , Insetos , Dados de Sequência Molecular , Oxirredução , Oxigenases/genética , Oxigenases/fisiologia , Fenótipo
4.
Protein Expr Purif ; 65(2): 122-32, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19174191

RESUMO

Compounds capable of stimulating soluble guanylate cyclase (sGC) activity might become important new tools to treat hypertension. While rational design of these drugs would be aided by elucidation of the sGC three-dimensional structure and molecular mechanism of activation, such efforts also require quantities of high quality enzyme that are challenging to produce. We implemented the titerless infected-cells preservation and scale-up (TIPS) methodology to express the heterodimeric sGC. In the TIPS method, small-scale insect cell cultures were first incubated with a recombinant baculovirus which replicated in the cells. The baculovirus-infected insect cells (BIIC) were harvested and frozen prior to cell lysis and the subsequent escape of the newly replicated virus into the culture supernatant. Thawed BIIC stocks were ultimately used for subsequent scale up. As little as 1 mL of BIIC was needed to infect a 100-L insect cell culture, in contrast to the usual 1L of high-titer, virus stock supernatants. The TIPS method eliminates the need and protracted time for titering virus supernatants, and provides stable, concentrated storage of recombinant baculovirus in the form of infected cells. The latter is particularly advantageous for virus stocks which are unstable, such as those for sGC, and provides a highly efficient alternative for baculovirus storage and expression. The TIPS process enabled efficient scale up to 100-L batches, each producing about 200mg of active sGC. Careful adjustment of expression culture conditions over the course of several 100-L runs provided uniform starting titers, specific activity, and composition of contaminating proteins that facilitated development of a process that reproducibly yielded highly active, purified sGC.


Assuntos
Baculoviridae/genética , Guanilato Ciclase/biossíntese , Receptores Citoplasmáticos e Nucleares/biossíntese , Spodoptera/citologia , Spodoptera/metabolismo , Animais , Baculoviridae/fisiologia , Western Blotting , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Guanilato Ciclase/química , Guanilato Ciclase/metabolismo , Humanos , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Guanilil Ciclase Solúvel , Spodoptera/virologia , Fatores de Tempo
5.
Protein Expr Purif ; 65(2): 133-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19189860

RESUMO

Soluble guanylate cyclase (sGC) has been purified from 100 L cell culture infected by baculovirus using the newer and highly effective titerless infected-cells preservation and scale-up (TIPS) method. Successive passage of the enzyme through DEAE, Ni(2+)-NTA, and POROS Q columns obtained approximately 100mg of protein. The sGC obtained by this procedure was already about 90% pure and suitable for various studies which include high throughput screening (HTS) and hit follow-up. However, in order to obtain enzyme of greater homogeneity and purity for crystallographic and high precision spectroscopic and kinetic studies of sGC with select stimulators, the sGC solution after the POROS Q step was further purified by GTP-agarose affinity chromatography. This additional step led to the generation of 26 mg of enzyme that was about 99% pure. This highly pure and active enzyme exhibited a M(r)=144,933 by static light scattering supportive of a dimeric structure. It migrated as a two-band protein, each of equal intensity, on SDS-PAGE corresponding to the alpha (M(r) approximately 77,000) and beta (M(r) approximately 70,000) sGC subunits. It showed an A(430)/A(280)=1.01, indicating one heme per heterodimer, and a maximum of the Soret band at 430 nm indicative of a penta-coordinated ferrous heme with a histidine as the axial ligand. The Soret band shifted to 398 nm in the presence of an NO donor as expected for the formation of a penta-coordinated nitrosyl-heme complex. Non-stimulated sGC had k(cat)/K(m)=1.7 x 10(-3)s(-1)microM(-1) that increased to 5.8 x 10(-1)s(-1)microM(-1) upon stimulation with an NO donor which represents a 340-fold increase due to stimulation. The novel combination of using the TIPS method for co-expression of a heterodimeric heme-containing enzyme, along with the application of a reproducible ligand affinity purification method, has enabled us to obtain recombinant human sGC of both the quality and quantity needed to study structure-function relationships.


Assuntos
Baculoviridae/genética , Guanilato Ciclase/isolamento & purificação , Guanilato Ciclase/metabolismo , Insetos/citologia , Insetos/virologia , Receptores Citoplasmáticos e Nucleares/isolamento & purificação , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Animais , Baculoviridae/fisiologia , Técnicas de Cultura de Células , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Guanilato Ciclase/química , Humanos , Cinética , Fosfoenolpiruvato Carboxiquinase (GTP)/química , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Proteínas Recombinantes/química , Sefarose/química , Guanilil Ciclase Solúvel
6.
Vet Ther ; 3(3): 270-80, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12447834

RESUMO

Cyclooxygenase (COX) performs the critical initial reaction in the arachidonic metabolic cascade, leading to formation of proinflammatory prostaglandins, thromboxanes, and prostacyclins. The discovery of a second COX isoform (COX-2) associated with inflammation led to agents that selectively inhibit COX-2. Cyclooxygenase-2 inhibitors are also being developed for canine applications. To assess the compound potency on canine enzymes, canine COX-1 and COX-2 were cloned, expressed, and purified. Cyclooxygenase-1 was cloned from a canine kidney complementary DNA (cDNA) library, with 96 % sequence homology to human COX-1. Cyclooxygenase-2 was cloned from canine kidney and lipopolysaccharide-stimulated macrophage cDNA libraries, with a 93 % sequence homology to human COX-2. The arachidonic acid Michaelis constants for canine COX-1 and COX-2 were 4.8 and 6.6 micrometer, respectively, compared with 9.6 and 10.2 micrometer for ovine. Inhibition results indicated that, for all compounds tested, there was no significant difference between potencies determined for canine enzymes and those for human enzymes.


Assuntos
Inibidores de Ciclo-Oxigenase/farmacologia , Cães/genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Prostaglandina-Endoperóxido Sintases/genética , Sequência de Aminoácidos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Clonagem Molecular , Ciclo-Oxigenase 1 , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Relação Dose-Resposta a Droga , Expressão Gênica , Biblioteca Gênica , Humanos , Isoenzimas/biossíntese , Isoenzimas/metabolismo , Rim/enzimologia , Proteínas de Membrana , Reação em Cadeia da Polimerase , Prostaglandina-Endoperóxido Sintases/biossíntese , Prostaglandina-Endoperóxido Sintases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
7.
Methods Mol Biol ; 644: 31-43, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20645163

RESUMO

Cyclooxygenase (COX) enzymes play important roles in normal physiology and during inflammation of various cells and tissues. In order to help understand the functions of these enzymes, their genes can be cloned to facilitate the production of the proteins in recombinant form. We outline a method to clone the genes from a human macrophage cell line for expression in an insect cell line infected with recombinant baculovirus encoding these enzymes.


Assuntos
Baculoviridae/genética , Clonagem Molecular/métodos , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Insetos/citologia , Proteínas Recombinantes/genética , Animais , Linhagem Celular , Ciclo-Oxigenase 1/isolamento & purificação , Ciclo-Oxigenase 2/isolamento & purificação , Vetores Genéticos , Humanos , Plasmídeos/genética , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação
8.
Anal Biochem ; 364(2): 204-12, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17376394

RESUMO

Leukotrienes are important mediators in a number of inflammatory diseases and therefore are a target of several therapeutic approaches. The first committed step in the synthesis of leukotrienes is the conversion of arachidonic acid to leukotriene A(4) (LTA(4)) in two successive reactions catalyzed by 5-lipoxygenase (5-LOX). Assays to measure 5-LOX activity typically have been low throughput and time consuming. In this article, we describe a fluorescence assay that is amenable to high-throughput screening in a 384-well microplate format. The fluorescent signal is measured during oxidation of 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) by human 5-LOX. The assay has been found to reliably identify small molecule inhibitors of human 5-LOX. The IC(50) values of several 5-LOX inhibitors in this new assay are comparable to those determined in a standard spectrophotometric assay that measures the formation of the 5(S)-hydroperoxyeicosatetraenoic acid (5-HpETE) product. In addition, we demonstrate the use of the assay in a high-throughput screen of the Pfizer compound collection to identify inhibitors of 5-LOX.


Assuntos
Araquidonato 5-Lipoxigenase/isolamento & purificação , Inibidores de Lipoxigenase/análise , Inibidores de Lipoxigenase/química , Espectrofotometria Ultravioleta/métodos , Compostos Cromogênicos/química , Clonagem Molecular/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Fluoresceínas/química , Fluorescência , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Humanos , Indicadores e Reagentes , Concentração Inibidora 50 , Leucotrieno A4/química , Leucotrienos/química , Sensibilidade e Especificidade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA