Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
World J Microbiol Biotechnol ; 37(10): 178, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34549358

RESUMO

Paludifilum halophilum DSM 102817T is the first member of the genus Paludifilum in the Thermoactinomycetaceae family. The thermohalophilic bacterium was isolated from the solar saltern of Sfax, Tunisia and was shown to be able to produce ectoines with a relatively high-yield and to cope with salt stress conditions. In this study, the whole genome of P. halophilum was sequenced and analysed. Analysis revealed 3,789,765 base pairs with an average GC% content of 51.5%. A total of 3775 genes were predicted of which 3616 were protein-coding genes and 73 were RNA genes. The genes encoding key enzymes for ectoines (ectoine and hydroxyectoine) synthesis (ectABCD) were identified from the bacterial genome next to a gene cluster (ehuABCD) encoding a binding-protein-dependent ABC transport system responsible for ectoines mobility through the cell membrane. With the aid of KEGG analysis, we found that the central catabolic network of P. halophilum comprises the pathways of glycolysis, tricarboxylic acid cycle, and pentose phosphate. In addition, anaplerotic pathways replenishing oxaloacetate and glutamate synthesis from central metabolism needed for high ectoines biosynthetic fluxes were identified through several key enzymes. Furthermore, a total of 18 antiSMASH-predicted putative biosynthetic gene clusters for secondary metabolites with high novelty and diversity were identified in P. halophilum genome, including biosynthesis of colabomycine-A, fusaricidin-E, zwittermycin A, streptomycin, mycosubtilin and meilingmycin. Based on these data, P. halophilum emerged as a promising source for ectoines and antimicrobials with the potential to be scaled up for industrial production, which could benefit the pharmaceutical and cosmetic industries.


Assuntos
Diamino Aminoácidos/metabolismo , Bacillales , Metabolismo Secundário/genética , Bacillales/genética , Bacillales/metabolismo , Biologia Computacional , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Salinidade , Estresse Salino
2.
Am J Hum Genet ; 93(1): 118-23, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23746551

RESUMO

Hereditary spastic paraplegias (HSPs) form a heterogeneous group of neurological disorders. A whole-genome linkage mapping effort was made with three HSP-affected families from Spain, Portugal, and Tunisia and it allowed us to reduce the SPG26 locus interval from 34 to 9 Mb. Subsequently, a targeted capture was made to sequence the entire exome of affected individuals from these three families, as well as from two additional autosomal-recessive HSP-affected families of German and Brazilian origins. Five homozygous truncating (n = 3) and missense (n = 2) mutations were identified in B4GALNT1. After this finding, we analyzed the entire coding region of this gene in 65 additional cases, and three mutations were identified in two subjects. All mutated cases presented an early-onset spastic paraplegia, with frequent intellectual disability, cerebellar ataxia, and peripheral neuropathy as well as cortical atrophy and white matter hyperintensities on brain imaging. B4GALNT1 encodes ß-1,4-N-acetyl-galactosaminyl transferase 1 (B4GALNT1), involved in ganglioside biosynthesis. These findings confirm the increasing interest of lipid metabolism in HSPs. Interestingly, although the catabolism of gangliosides is implicated in a variety of neurological diseases, SPG26 is only the second human disease involving defects of their biosynthesis.


Assuntos
Disfunção Cognitiva/genética , Gangliosídeos/biossíntese , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Idade de Início , Brasil , Ataxia Cerebelar/genética , Criança , Pré-Escolar , Mapeamento Cromossômico/métodos , Exoma , Feminino , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Gangliosídeos/genética , Predisposição Genética para Doença , Alemanha , Homozigoto , Humanos , Lactente , Metabolismo dos Lipídeos , Masculino , Mutação de Sentido Incorreto , Linhagem , Portugal , Espanha , Paraplegia Espástica Hereditária/metabolismo , Tunísia , Adulto Jovem
3.
Theor Biol Med Model ; 12: 23, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26541955

RESUMO

BACKGROUND: DNA double-strand breaks (DSBs) are highly cytotoxic and mutagenic. MRE11 plays an essential role in repairing DNA by cleaving broken ends through its 3' to 5' exonuclease and single-stranded DNA endonuclease activities. METHODS: The present study aimed to in silico characterization and molecular modeling of MRE11 from Phoenix dactylifera L cv deglet nour (DnMRE11) by various bioinformatic approaches. To identify DnMRE11 cDNA, assembled contigs from our cDNA libraries were analysed using the Blast2GO2.8 program. RESULTS: The DnMRE11 protein length was 726 amino acids. The results of HUMMER show that DnMRE11 is formed by three domains: the N-terminal core domain containing the nuclease and capping domains, the C-terminal half containing the DNA binding and coiled coil region. The structure of DnMRE11 is predicted using the Swiss-Model server, which contains the nuclease and capping domains. The obtained model was verified with the structure validation programs such as ProSA and QMEAN servers for reliability. Ligand binding studies using COACH indicated the interaction of DnMRE11 protein with two Mn(2+) ions and dAMP. The ConSurf server predicted that residues of the active site and Nbs binding site have high conservation scores between plant species. CONCLUSIONS: A model structure of DnMRE11 was constructed and validated with various bioinformatics programs which suggested the predicted model to be satisfactory. Further validation studies were conducted by COACH analysis for active site ligand prediction, and revealed the presence of six ligands binding sites and two ligands (2 Mn(2+) and dAMP).


Assuntos
Simulação por Computador , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Modelos Moleculares , Phoeniceae/química , Proteínas de Plantas/química , Sítios de Ligação , Família Multigênica , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Software , Homologia Estrutural de Proteína
4.
Artigo em Inglês | MEDLINE | ID: mdl-36043715

RESUMO

Background Urtica dioica (Urticaceae) is distinguished by its therapeutic medicinal and pharmacological properties from all over the world. This investigation was designed toassess the chemical composition, the total polyphenol and flavonoid content, antioxidant, anti-proliferative, and anti-inflammatory effects of Urtica dioica essential oil (UDEO). Methods GC/MS analysis was performed to assess the chemical composition, standard antioxidative test DPPH assay, reducing power assay, as well as the anti-proliferative capacities of UDEO against HeLa cell lines using the MTT test. In addition, the anti-inflammatory activities of UDEO were evaluated using paw thickness measurements in rats with carrageenan-induced paw edema and pathologic evaluation of inflammation in paw sections. Results GC/MS analysis revealed benzene dicarboxylic acid (14.69%), ß-linalool (9.79%), phytol (9.52%), menthol (6.65%), borneol (6.45%), 3-Eicosene (E) (6.10%), 1-8 cineole (5.60%) and camphor (5.36%) as the major components of UDEO. In vitro results showed that UDEO contained 191±2.04 mg GAE/g of polyphenols and 83.59±4.7 mg CE/g of flavonoids. In addition, the UDEO showed radical scavenging activity with IC50 = 0.14±0.003 mg/mL and ferric reducing antioxidant power (FRAP) (optical density=0.556). A side from the UDEO's antioxidant properties, our findings revealed a reduction in ROS generation in the HeLa cell line. Furthermore, the anti-proliferative activity of UDEO is accompanied by acytotoxicity effect (IC50 at 3.20 µg ml-1). Data from inflammation models revealed that UDEO has an anti-inflammatory effect. The pretreatment with UDEO or Indomethacin (Ind) reduced significantly the volume of edema induced by Carr, the level of C-reactive protein (CRP), the reactive thiobarbituric acid (TBARS), the conjugated dienes (CD), the carbonyl proteins (CP) and the advanced protein oxidation products (AOPP). Furthermore, it restored the hematology parameters such as white blood cells (WBC), lymphocytes (LYM), and platelets (PLT). In addition, it increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). In UDEO-treated rats, the histopathological examinations of the paws revealed little infiltration of inflammatory cells. Conclusion The decrease in paw edema and human cell lines HeLa cytotoxicity showed that UDEO possesses anti-inflammatory and antioxidant properties, which could be attributed to the high amount of phenolic and flavonoid contents.

5.
Plants (Basel) ; 10(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445405

RESUMO

As a tree of considerable importance in arid regions-date palm, Phoenix dactylifera L. survival in contaminated areas of Sfax city has drawn our attention. Leaf samples of the plants grown in the study area showed high levels of cadmium (Cd), copper (Cu), and chromium (Cr). On the basis of this finding, the cellular mechanisms that explain these metal accumulations were investigated in controlled conditions. After four months of exposure to Cd, Cr, or Cu, high bioconcentration and translocation factor (TF>1) have been shown for date palm plantlets exposed to Cd and low TF values were obtained for plantlets treated with Cr and Cu. Moreover, accumulation of oxidants and antioxidant enzyme activities occurred in exposed roots to Cu and Cd. Secondary metabolites, such as polyphenols and flavonoids, were enhanced in plants exposed at low metal concentrations and declined thereafter. Accumulation of flavonoids in cells may be correlated with the expression of the gene encoding Pdmate5, responsible for the transport of secondary metabolites, especially flavonoids. Other transporter genes responded positively to metal incorporation, especially Pdhma2, but also Pdabcc and Pdnramp6. The latter would be a new candidate gene sensitive to metallic stress in plants. Expressions of gene coding metal chelators were also investigated. Pdpcs1 and Pdmt3 exhibited a strong induction in plants exposed to Cr. These modifications of the expression of some biochemical and molecular based-markers in date palm helped to better understand the ability of the plant to tolerate metals. They could be useful in assessing heavy metal contaminations in polluted soils and may improve accumulation capacity of other plants.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31302231

RESUMO

Date palm in Tunisia is of major economic importance but are also factors of social, environmental and economic stability. An annotated assembly of the transcriptome of cultivar Deglet Nour was reported. RNA was isolated from plant Cd-contaminated leaves, and 37,049 unique Illumina RNA-seq reads were used in a transcriptome assembly. The draft transcriptome assembly consists of 6789 contigs and 17.285 singletons with a means length of 858 bp and 1.042 bp, respectively. The final assembly was functionally annotated using Blast2GO software, allowing the identification of putative genes controlling important agronomic traits. The annotated transcriptome data sets were used to query all known Kyoto Encyclopedia of Genes and Genomes pathways. The most represented molecular functions and biological processes were nucleotide binding and transcription, transport and response to stress and abiotic and biotic stimuli. A prediction of the genes interaction network was proposed by selecting corresponding functionally similar genes from Arabidopsis datasets, downloaded by GeneMANIA version 2.1. Several Cd-responsive genes expression was monitored in in vitro isolated explant of Cd stressed Deglet Nour. Some chelators encoding genes were upregulated confirming in silico findings. Genes encoding HMs transporters in date palm showed expression enhancement more pronounced after 20 days of exposure. P. dactylifera transcriptome provides a valuable resource for future functional analysis of candidate genes involved in metal stress response.


Assuntos
Cádmio/toxicidade , Phoeniceae/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Estudos de Associação Genética/métodos , Folhas de Planta/genética , RNA-Seq/métodos , Tunísia
7.
J Hazard Mater ; 326: 165-176, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28013160

RESUMO

Wastewater reuse in agriculture may help mitigate water scarcity. This may be reached if high quality treatments removing harmful pollutants are applied. The aim of the present study was to compare the effect of untreated (UTW) and treated wastewater (TW) on germination and seedlings development of alfalfa (Medicago sativa L.), fescue (Festuca arundinacea Schreb.) and sorghum (Sorghum bicolor (L.) Moench). UTW presented high turbidity (130 NTU), chemical and biological oxygen demand (COD, 719mgL-1, BOD5, 291mgL-1) and metal concentrations. These levels caused mortality (18% for fescue), decreased germination speed in seeds (37.5% for alfalfa) and reductions of root and stem length in seedlings (80% and 22% respectively for alfalfa). Adverse effects on seeds germination were reflected at the biochemical level by increased H2O2 levels (6 times for sorghum after 5days) and by increased Malondialdehyde (MDA) levels (more than 600 times for sorghum roots) during seedlings development. When TW was used, these parameters were close to control seeds ones. They were also dependent on plant species and developmental stage. Therefore, for efficient reclaimed wastewater reuse in irrigation, suitable crops, displaying wide tolerance to toxic contents during germination and later seedling development stages have to be selected.


Assuntos
Festuca/genética , Germinação/efeitos dos fármacos , Medicago sativa/genética , Sementes/genética , Sorghum/genética , Eliminação de Resíduos Líquidos , Águas Residuárias/toxicidade , Agricultura , Amilases/metabolismo , Antioxidantes/metabolismo , Festuca/efeitos dos fármacos , Malondialdeído/metabolismo , Medicago sativa/efeitos dos fármacos , Proteínas de Plantas/biossíntese , Raízes de Plantas/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Reciclagem , Plântula/efeitos dos fármacos , Sorghum/efeitos dos fármacos , Águas Residuárias/química
8.
Front Microbiol ; 8: 517, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439259

RESUMO

The soil-borne gram-positive bacteria Aneurinibacillus migulanus strain Nagano shows considerable potential as a biocontrol agent against plant diseases. In contrast, A. migulanus NCTC 7096 proved less effective for inhibition of plant pathogens. Nagano strain exerts biocontrol activity against some gram-positive and gram-negative bacteria, fungi and oomycetes through the production of gramicidin S (GS). Apart from the antibiotic effects, GS increases the rate of evaporation from the plant surface, reducing periods of surface wetness and thereby indirectly inhibiting spore germination. To elucidate the molecular basis of differential biocontrol abilities of Nagano and NCTC 7096, we compared GS production and biosurfactant secretion in addition to genome mining of the genomes. Our results proved that: (i) Using oil spreading, blood agar lysis, surface tension and tomato leaves wetness assays, Nagano showed increased biosurfactant secretion in comparison with NCTC 7096, (ii) Genome mining indicated the presence of GS genes in both Nagano and NCTC 7096 with two amino acid units difference between the strains: T342I and P419S. Using 3D models and the DUET server, T342I and P419S were predicted to decrease the stability of the NCTC 7096 GS synthase, (iii) Nagano produced two additional GS-like molecules GS-1155 (molecular weight 1155) and GS-1169 (molecular weight 1169), where one or two ornithine residues replace lysine in the peptide. There was also a negative correlation between surface tension and the quantity of GS-1169 present in Nagano, and (iv) the Nagano genome had a full protein network of exopolysaccharide biosynthesis in contrast to NCTC 7096 which lacked the first enzyme of the network. NCTC 7096 is unable to form biofilms as observed for Nagano. Different molecular layers, mainly gramicidin secondary metabolite production, account for differential biocontrol abilities of Nagano and NCTC 7096. This work highlighted the basis of differential biological control abilities between strains belonging to the same species and demonstrates techniques useful to the screening of effective biocontrol strains for environmentally friendly secondary metabolites that can be used to manage plant pathogens in the field.

9.
Front Microbiol ; 8: 1438, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824571

RESUMO

The Gram positive, non-pathogenic endospore-forming soil inhabiting prokaryote Bacillus amyloliquefaciens is a plant growth-promoting rhizobacterium. Bacillus amyloliquefaciens processes wide biocontrol abilities and numerous strains have been reported to suppress diverse bacterial, fungal and fungal-like pathogens. Knowledge about strain level biocontrol abilities is warranted to translate this knowledge into developing more efficient biocontrol agents and bio-fertilizers. Ever-expanding genome studies of B. amyloliquefaciens are showing tremendous increase in strain-specific new secondary metabolite clusters which play key roles in the suppression of pathogens and plant growth promotion. In this report, we have used genome mining of all sequenced B. amyloliquefaciens genomes to highlight species boundaries, the diverse strategies used by different strains to promote plant growth and the diversity of their secondary metabolites. Genome composition of the targeted strains suggest regions of genomic plasticity that shape the structure and function of these genomes and govern strain adaptation to different niches. Our results indicated that B. amyloliquefaciens: (i) suffer taxonomic imprecision that blurs the debate over inter-strain genome diversity and dynamics, (ii) have diverse strategies to promote plant growth and development, (iii) have an unlocked, yet to be delimited impressive arsenal of secondary metabolites and products, (iv) have large number of so-called orphan gene clusters, i.e., biosynthetic clusters for which the corresponding metabolites are yet unknown, and (v) have a dynamic pan genome with a secondary metabolite rich accessory genome.

10.
Microbiol Res ; 182: 116-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26686620

RESUMO

Aneurinibacillus migulanus strains Nagano and NCTC 7096 show potential in biocontrol against fungal and fungus-like plant pathogens, including a wide range of Ascomycota, Basidiomycota, and Oomycetes. Differences in terms of the range of pathogens that each strain inhibits, however, suggested that production of a single antibiotic cyclic peptide, gramicidin S (GS), by the two strains, is not the sole mechanism of inhibition. The availability of four sequenced genomes of Aneurinibacillus prompted us to apply genome mining techniques to identify the bioactive potential of A. migulanus and to provide insights into the secondary metabolite arsenal of the genus Aneurinibacillus. Up to eleven secondary metabolite biosynthetic gene clusters were present in the three Aneurinibacillus species. Biosynthetic gene clusters specifying bacteriocins, microcins, non-ribosomal peptides, polyketides, terpenes, phosphonates, lasso peptides and linaridins were identified. Chitinolytic potential and iron metabolism regulation were also investigated. With increasing numbers of biocontrol bacterial genomes being sequenced and mined, the use of approaches similar to those described in this paper will lead to an increase in the numbers of environmentally friendly natural products available to use against plant diseases.


Assuntos
Antifúngicos/metabolismo , Bacillales/metabolismo , Metabolismo Secundário , Sequência de Aminoácidos , Antifúngicos/química , Antifúngicos/farmacologia , Bacillales/classificação , Bacillales/genética , Fungos/efeitos dos fármacos , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade da Espécie
11.
Ann Indian Acad Neurol ; 16(1): 57-61, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23661964

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder involving degeneration of anterior horn cells of spinal cord, resulting in progressive muscle weakness and atrophy. AIMS: The purpose of our study was to determine the frequency of SMN and NAIP deletions in Tunisian SMA patients. MATERIALS AND METHODS: Polymerase chain reaction (PCR) combined with restriction fragment length polymorphism (RFLP) was used to detect the deletion of exon 7 and exon 8 of SMN1 gene, as well as multiplex PCR for exon 5 and 13 of NAIP gene. RESULTS: Fifteen (45.4%) out of 33 SMA patients were homozygously deleted for exons 7 and/or 8 of SMN1. Homozygous deletion of NAIP gene was observed in 20% (3 / 15) of patients. CONCLUSIONS: The molecular diagnosis system based on PCR-RFLP analysis can conveniently be applied in the clinical testing, genetic counseling, prenatal diagnosis, and pre-implantation genetic diagnosis of SMA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA