Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 660: 726-734, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38271808

RESUMO

The reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) is an important reaction in both chemical manufacturing and environmental protection. The design of a highly active, multifunctional and reusable catalyst for efficient 4-NP decontamination/valorization is therefore crucial to bring in economic and societal benefits. Herein, we achieve an efficient plasmonic-photothermal catalyst of Pd nanoparticles by growing them on graphene-polyelectrolytes self-assembly nanolayers via an in situ green reduction approach using polyelectrolyte as the reductant. The as-fabricated catalyst shows high catalytic behaviors and good stability (maintained over 92.5 % conversion efficiency after ten successive cycles) for 4-NP reduction under ultra-low catalyst dose. The rate constant and turnover frequency were calculated at 0.197 min-1 and 7.79 mmol g-1 min-1, respectively, which were much higher than those of most reported catalysts. Moreover, the as-prepared catalyst exhibited excellent photothermal conversion efficiency of ∼77 % and boosted 4-NP reduction by ∼2-fold under near-infrared irradiation (NIR). This study provides valuable insights into the design of greener catalytic materials and facilitates the development of multifunctional plasmonic-photothermal catalysts for diverse environmental, chemical, and energy applications using NIR.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(6): 1566-9, 2010 Jun.
Artigo em Zh | MEDLINE | ID: mdl-20707151

RESUMO

The method of UV/Visible absorption spectroscopy for olefin catalytic system was introduced in this paper, whose testing condition was much closer to the polymerization conditions. The actions of olefin polymerization catalyst (dbm)2 ZrCl2 with cocatalyst AlEt2 Cl (or MAO) were investigated by UV/visible absorption spectroscopy at atmosphere temperature. It was shown that the UV/Visible main absorption band of the zirconocenium, which can be related to the ligand to metal charge transfer bands (LMCT), varies greatly upon incremental addition of AlEt2 Cl or MAO. For the low molar ratios of Al/Zr in the catalytic system, there was the substitution of an electron withdrawing chlorine atom by a donating alkyl group. Then a hypsochromic shift of the initial catalyst absorption band, corresponding to the monomethylation of the catalyst, was observed in each catalytic system (dbm)2 ZrCl2/AlEt2 Cl (or (dbm)2 ZrCl2/MAO). On the contrary, further addition of AlEt2 Cl (or MAO) was accompanied by a continuous bathochromic shift of the maximal wavelength, which corresponding to the formation of more dissociated ionic active species. Then, there would be a coordination of monomer to the ionic active species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA