Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Virol ; 98(4): e0015924, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38499512

RESUMO

Equine herpesvirus type 8 (EHV-8) causes abortion and respiratory disease in horses and donkeys, leading to serious economic losses in the global equine industry. Currently, there is no effective vaccine or drug against EHV-8 infection, underscoring the need for a novel antiviral drug to prevent EHV-8-induced latent infection and decrease the pathogenicity of this virus. The present study demonstrated that hyperoside can exert antiviral effects against EHV-8 infection in RK-13 (rabbit kidney cells), MDBK (Madin-Darby bovine kidney), and NBL-6 cells (E. Derm cells). Mechanistic investigations revealed that hyperoside induces heme oxygenase-1 expression by activating the c-Jun N-terminal kinase/nuclear factor erythroid-2-related factor 2/Kelch-like ECH-associated protein 1 axis, alleviating oxidative stress and triggering a downstream antiviral interferon response. Accordingly, hyperoside inhibits EHV-8 infection. Meanwhile, hyperoside can also mitigate EHV-8-induced injury in the lungs of infected mice. These results indicate that hyperoside may serve as a novel antiviral agent against EHV-8 infection.IMPORTANCEHyperoside has been reported to suppress viral infections, including herpesvirus, hepatitis B virus, infectious bronchitis virus, and severe acute respiratory syndrome coronavirus 2 infection. However, its mechanism of action against equine herpesvirus type 8 (EHV-8) is currently unknown. Here, we demonstrated that hyperoside significantly inhibits EHV-8 adsorption and internalization in susceptible cells. This process induces HO-1 expression via c-Jun N-terminal kinase/nuclear factor erythroid-2-related factor 2/Kelch-like ECH-associated protein 1 axis activation, alleviating oxidative stress and triggering an antiviral interferon response. These findings indicate that hyperoside could be very effective as a drug against EHV-8.


Assuntos
Antivirais , Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Sistema de Sinalização das MAP Quinases , Quercetina , Animais , Bovinos , Camundongos , Coelhos , Antivirais/farmacologia , Cavalos , Interferons/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quercetina/análogos & derivados , Quercetina/farmacologia , Linhagem Celular
2.
J Cell Mol Med ; 28(9): e18350, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700030

RESUMO

Mechanical force induces hypoxia in the pulpal area by compressing the apical blood vessels of the pulp, triggering pulpal inflammation during orthodontic tooth movement. However, this inflammation tends to be restorable. Macrophages are recognized as pivotal immunoreactive cells in the dental pulp. Whether they are involved in the resolution of pulpal inflammation in orthodontic teeth remains unclear. In this study, we investigated macrophage polarization and its effects during orthodontic tooth movement. It was demonstrated that macrophages within the dental pulp polarized to M2 type and actively participated in the process of pulpal inflammation resolution. Inflammatory reactions were generated and vascularization occurred in the pulp during orthodontic tooth movement. Macrophages in orthodontic pulp show a tendency to polarize towards M2 type as a result of pulpal hypoxia. Furthermore, by blocking M2 polarization, we found that macrophage M2 polarization inhibits dental pulp-secreting inflammatory factors and enhances VEGF production. In conclusion, our findings suggest that macrophages promote pulpal inflammation resolution by enhancing M2 polarization and maintaining dental health during orthodontic tooth movement.


Assuntos
Polpa Dentária , Inflamação , Macrófagos , Técnicas de Movimentação Dentária , Polpa Dentária/metabolismo , Polpa Dentária/patologia , Animais , Macrófagos/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Camundongos , Polaridade Celular , Masculino , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pulpite/patologia , Pulpite/metabolismo , Ativação de Macrófagos
3.
J Org Chem ; 89(11): 8220-8229, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38752983

RESUMO

In this work, a practical copper-catalyzed multicomponent coupling reaction of primary aromatic amines, rongalite, and alkynes for the direct synthesis of N-aryl propargylamines has been developed. This method could overcome the substrate limitation in A3 coupling reactions of primary aromatic amines, formaldehyde, and alkynes. Mechanistic studies revealed that rongalite acts as not only the active C1 unit but also the accelerator to activate the in situ-generated N-arylmethanimines for the coupling reaction with alkynes. This coupling reaction is highly efficient and features a broad substrate scope, as well as utility with scale-up synthesis and converting the corresponding product N-aryl propargylamines into useful heterocyclic skeletons.

4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 561-564, 2024 May 10.
Artigo em Zh | MEDLINE | ID: mdl-38684301

RESUMO

OBJECTIVE: To explore the genetic basis for a Chinese pedigree affected with Brachydactyly type B1 (BDB1) through whole exome sequencing (WES). METHODS: A BDB1 pedigree admitted to the Affiliated Women and Children's Hospital of Qingdao University on June 25, 2021 was selected as the study subject. Clinical data of the pedigree was collected with informed consent. WES was carried out for the proband, and candidate variant was verified by Sanger sequencing and bioinformatic analysis. RESULTS: WES and Sanger sequencing had identified a heterozygous c.2257delT variant in the ROR2 gene of the proband and his affected father, which has conformed to an autosomal dominant pattern of inheritance. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified to be likely pathogenic (PVS1_Strong+PM2 Supporting+PP4). CONCLUSION: The c.2257delT variant of the ROR2 gene was unreported previously and is strongly correlated with the BDB1-like phenotype in this pedigree. Above finding has enriched the mutational spectrum of the ROR2 gene and facilitated the diagnosis and genetic counseling for this pedigree.


Assuntos
Braquidactilia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Adulto , Feminino , Humanos , Masculino , Braquidactilia/genética , China , População do Leste Asiático/genética , Sequenciamento do Exoma , Mutação , Linhagem , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética
5.
BMC Oral Health ; 24(1): 656, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835024

RESUMO

INTRODUCTION: The efficacy of root canal treatment is greatly impacted by a thorough understanding of root canal anatomy. This systematic review and meta-analysis aim to thoroughly investigate the root morphology and canal configuration (RMCC) of permanent premolars (PMs). METHODOLOGY: A comprehensive analysis was conducted following the PRISMA guidelines. Literature exploration was carried out across four electronic databases (PubMed, Embase, Cochrane, and Web of Science). The risk of bias assessment was conducted for the included studies utilizing the Anatomical Quality Assessment (AQUA) tool. Data analysis was performed utilizing SPSS and RevMAN5.3.3. The meta-analysis was applied with a 95% confidence interval to calculate odds ratios (OR). RESULTS: Among the 82 selected studies, 59 studies exhibited potential bias in domain one (objective(s) and subject characteristics), followed by domain three (methodology characterization). The majority of maxillary PM1s had either single root (46.7%) or double roots (51.9%), while three-rooted variants were uncommon (1.4%). Conversely, most other PMs exhibited a single root. In terms of canal configuration, maxillary PM1s predominantly featured double distinct canals (87.2%), with the majority of maxillary PM2s displaying either a single canal (51.4%) or double canals (48.3%). Mandibular PMs were primarily characterized by single canals, accounting for 78.3% of mandibular PM1s and 90.3% of mandibular PM2s. Subgroup analyses revealed higher incidences of single-rooted and single-canalled PMs among Asians compared to Caucasians. Additionally, women exhibited a higher incidence of single-rooted PMs, while men showed a greater frequency of double-rooted PMs. CONCLUSIONS: The comprehensive analysis indicated that maxillary PM1s predominantly possess double roots and double canals, whereas maxillary PM2s and mandibular PMs were primarily characterized by single-rooted with a single canal. Notably, single root and single canal were more prevalent among women and Asian samples.


Assuntos
Dente Pré-Molar , Tomografia Computadorizada de Feixe Cônico , Cavidade Pulpar , Raiz Dentária , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Dente Pré-Molar/diagnóstico por imagem , Dente Pré-Molar/anatomia & histologia , Raiz Dentária/diagnóstico por imagem , Raiz Dentária/anatomia & histologia , Cavidade Pulpar/diagnóstico por imagem , Cavidade Pulpar/anatomia & histologia
6.
Appl Environ Microbiol ; 89(7): e0058123, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37338346

RESUMO

Phage-encoded endolysins are emerging antibacterial agents based on their ability to efficiently degrade peptidoglycan on Gram-positive bacteria, but the envelope characteristics of Gram-negative bacteria limit their application. Engineering modifications of endolysins can improve the optimization of their penetrative and antibacterial properties. This study constructed a screening platform to screen for engineered Artificial-Bp7e (Art-Bp7e) endolysins with extracellular antibacterial activity against Escherichia coli. An oligonucleotide of 20 repeated NNK codons was inserted upstream of the endolysin gene Bp7e to construct a chimeric endolysin library in the pColdTF vector. The chimeric Art-Bp7e proteins were expressed by transforming the plasmid library into E. coli BL21 and released by chloroform fumigation, and the protein activities were evaluated by the spotting method and the colony-counting method to screen for promising proteins. Sequence analysis showed that all screened proteins with extracellular activities had a chimeric peptide with a positive charge and an α-helical structure. Also, a representative protein, Art-Bp7e6, was further characterized. It exhibited broad antibacterial activity against E. coli (7/21), Salmonella enterica serovar Enteritidis (4/10), Pseudomonas aeruginosa (3/10), and even Staphylococcus aureus (1/10). In the transmembrane process, the chimeric peptide of Art-Bp7e6 depolarized the host cell envelope, increased the permeability of the cell, and facilitated the movement of Art-Bp7e6 across the envelope to hydrolyze the peptidoglycan. In conclusion, the screening platform successfully screened for chimeric endolysins with extracellular antibacterial activities against Gram-negative bacteria, which provides methodological support for the further screening of engineered endolysins with high extracellular activities against Gram-negative bacteria. Also, the established platform showed broad application prospects and can be used to screen various proteins. IMPORTANCE The presence of the envelope in Gram-negative bacteria limits the use of phage endolysins, and engineering endolysins is an efficient way to optimize their penetrative and antibacterial properties. We built a platform for endolysin engineering and screening. A random peptide was fused with the phage endolysin Bp7e to construct a chimeric endolysin library, and engineered Artificial-Bp7e (Art-Bp7e) endolysins with extracellular activity against Gram-negative bacteria were successfully screened from the library. The purposeful Art-Bp7e had a chimeric peptide with an abundant positive charge and an α-helical structure, which led Bp7e to acquire the ability for the extracellular lysis of Gram-negative bacteria and showed a broad lysis spectrum. The platform provides a huge library capacity without the limitations of reported proteins or peptides. It can be utilized for the further screening of optimal endolysins against Gram-negative bacteria as well as for the screening of additional proteins with specific modifications.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Antibacterianos/metabolismo , Bactérias Gram-Negativas/metabolismo , Endopeptidases/genética , Endopeptidases/farmacologia , Endopeptidases/química
7.
Virus Genes ; 59(2): 290-300, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36607487

RESUMO

A lysogenic phage vB_EcoP_DE5 (hereafter designated DE5) was isolated from donkey-derived Escherichia coli. The bacteriophage was examined by transmission electron microscopy, and the result showed that DE5 belonged to the genus Kuravirus. DE5 was sensitive to changes in temperature and pH, and it could maintain its activity at pH 7 and below 60 â„ƒ. The whole genome sequencing revealed that DE5 had a double-stranded DNA genome of 77, 305 bp with 42.09% G+C content. A total of 126 open reading frames (ORFs) were identified, including functional genes related to phage integration, DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. One phage integrase gene, one autotransporter adhesin gene, and one tRNA gene were predicted in the whole genome, and no genes associated with drug resistance were identified. The phage DE5 integrase contained 187 amino acids and belonged to the small serine recombinase family. BLASTn analysis revealed that phage DE5 had a high-sequence identity (96%) with E. coli phage SU10. Phylogenetic analysis showed that phage DE5 was a member of the genus Kuravirus. The whole genome sequencing of lysogenic phage DE5 enhanced our understanding of lysogenic phages and their therapeutic applications.


Assuntos
Bacteriófagos , Podoviridae , Bacteriófagos/genética , Escherichia coli/genética , Filogenia , Genoma Viral , Podoviridae/genética , Sequenciamento Completo do Genoma , Integrases/genética , Fases de Leitura Aberta
8.
Virus Genes ; 59(5): 752-762, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322310

RESUMO

Bacteriophages are an important source of novel genetic diversity. Sequencing of phage genomes can reveal new proteins with potential uses in phage therapy and help unravel the diversity of biological mechanisms by which phages take over the machinery of the host during infection. To expand the available collection of phage genomes, we have isolated, sequenced, and assembled the genome sequences of three phages that infect three pathogenic Escherichia coli strains: vB_EcoM_DE15, vB_EcoM_DE16, and vB_EcoM_DE17. Morphological characterization and genomic analysis indicated that all three phages were strictly lytic and free from integrases, virulence factors, toxins, and antimicrobial resistance genes. All three phages contained tRNAs, and especially, vB_EcoM_DE17 contained 25 tRNAs. The genomic features of these phages indicate that natural phages are capable of lysing pathogenic E.coli and have great potential in the biocontrol of bacteria.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Escherichia coli/genética , Genoma Viral , Genômica , Bactérias
9.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835606

RESUMO

Clostridium perfringens (C. perfringens) is one of the foremost pathogens responsible for diarrhea in foals. As antibiotic resistance increases, phages that specifically lyse bacteria are of great interest to us with regard to C. perfringens. In this study, a novel C. perfringens phage DCp1 was isolated from the sewage of a donkey farm. Phage DCp1 had a non-contractile short tail (40 nm in length) and a regular icosahedral head (46 nm in diameter). Whole-genome sequencing indicated that phage DCp1 had a linear double-stranded DNA genome with a total length of 18,555 bp and a G + C content of 28.2%. A total of 25 ORFs were identified in the genome, 6 of which had been assigned to functional genes, others were annotated to encode hypothetical proteins. The genome of phage DCp1 lacked any tRNA, virulence gene, drug resistance gene, or lysogenic gene. Phylogenetic analysis indicated that phage DCp1 belonged to the family Guelinviridae, Susfortunavirus. Biofilm assay showed that phage DCp1 was effective in inhibiting the formation of C. perfringens D22 biofilms. Phage DCp1 could completely degrade the biofilm after 5 h of interaction. The current study provides some basic information for further research on phage DCp1 and its application.


Assuntos
Bacteriófagos , Animais , Cavalos/genética , Bacteriófagos/genética , Clostridium perfringens , Filogenia , Genoma Viral , Genômica , Biofilmes
10.
Virol J ; 19(1): 10, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991640

RESUMO

BACKGROUND: Equine herpesvirus-8 (EHV-8) is one of the most economically significant viruses that infect mammals of the genus Equus worldwide, which cause severe respiratory diseases and abortion in horses. However, there is no report of abortion caused by EHV-8 in donkeys. CASE PRESENTATION: The present case report is about a 4-year-old donkey having an abortion and showing a serious respiratory issue on the 296th day of pregnancy. Bacteriological and molecular tests were used to screen possible bacterial/viral pathogens to detect the etiological agent. Salmonella abortus equi, EHV-1, EHV-4, and EAV were all negative in the current study. EHV-8, on the other hand, was the only agent that was isolated and identified. CONCLUSIONS: This was for the first time that EHV-8 had been isolated from a donkey in China. EHV-8 infection can cause abortion in donkeys; therefore, veterinarians and breeders should be aware of it.


Assuntos
Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Doenças dos Cavalos , Varicellovirus , Animais , China , Equidae , Feminino , Infecções por Herpesviridae/veterinária , Doenças dos Cavalos/diagnóstico , Cavalos , Gravidez
11.
Arch Virol ; 167(9): 1805-1817, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35716268

RESUMO

A lytic Pseudomonas aeruginosa phage, vB_PaeP_Lx18 (Lx18), was isolated from the sewage of a dairy farm. Biological characterization revealed that Lx18 was stable from 40 °C to 60 °C and over a wide range of pH values from 4 to 10. It was able to lyse 63.6% (21/33) of the P. aeruginosa strains tested and was able to reduce and disperse biofilms, with a biofilm reduction rate of 76.8%. Whole-genome sequencing showed that Lx18 is a dsDNA virus with a genome of 42,735 bp and G+C content of 62.16%. The genome contains 54 open reading frames (ORFs), 28 of which have known functions, including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. No virulence or tRNA genes were identified. Phylogenetic analysis showed that phage Lx18 belongs to the genus Phikmvvirus. The lysozyme of Lx18, Lys18, was cloned and expressed. The combined action of Lys18 and ethylenediaminetetraacetic acid (EDTA) had antibacterial activity against Pseudomonas aeruginosa. The study of phage Lx18 and its lysozyme will provide basic information for further research on the treatment of Pseudomonas aeruginosa infections.


Assuntos
Bacteriófagos , Podoviridae , Fagos de Pseudomonas , Antibacterianos/farmacologia , Bacteriófagos/genética , Genoma Viral , Muramidase/genética , Fases de Leitura Aberta , Filogenia , Podoviridae/genética , Pseudomonas aeruginosa
12.
BMC Vet Res ; 18(1): 410, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411417

RESUMO

BACKGROUND: The holin-endolysin lysis system plays an essential role in the phage life cycle. Endolysins are promising alternatives to antibiotics, and have been successfully used against Gram-positive bacteria. However, a few endolysins can externally lyse Gram-negative bacteria, due to the inaccessible peptidoglycan layer covered by the envelope. RESULTS: This study investigated the lysis system of a new Siphoviridae bacteriophage vB_Sal-S-S10 (S10), which, that was isolated from broiler farms, was found to be able to infect 51.4% (37/72) of tested S. enteritidis strains. Phage S10 genome had a classic holin-endolysin lysis system, except that one holin and one endolysin gene were functionally annotated. The orf 22 adjacent to the lysis cassette was identified as a new endolysin gene. Antibacterial activity assays showed that holin had an intracellular penetrating activity against S. enteritidis 35; both endolysins acted on the cell envelope of S. enteritidis 35 and showed a natural extracellular antibacterial activity, leading to a ~ 1 log titer decrease in 30 min. Protein characterization of lysin1 and lysin2 revealed that the majority of the N-terminus and the C-terminus were hydrophobic amino acids or positively charged. CONCLUSION: In this study, a new Salmonella phage vB_Sal-S-S10 (S10) was characterized and showed an ideal development prospect. Phage S10 has a classic holin-endolysin lysis system, carrying an overlapping holin-lysin gene and a novel lysin gene. Both endolysins coded by lysin genes could externally lyse S. enteritidis. The natural extracellular antibacterial character of endolysins would provide necessary information for the development of engineering endolysin as the antibiotic alternative against the infection with multidrug-resistant gram-negative bacteria.


Assuntos
Bacteriófagos , Animais , Bacteriófagos/metabolismo , Salmonella enteritidis , Galinhas , Antibacterianos/farmacologia , Antibacterianos/metabolismo
13.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238583

RESUMO

Bp7 is a T-even phage with a broad host range specific to Escherichia coli, including E. coli K-12. The receptor binding protein (RBP) of bacteriophages plays an important role in the phage adsorption process and determines phage host range, but the molecular mechanism involved in host recognition of phage Bp7 remains unknown. In this study, the interaction between phage Bp7 and E. coli K-12 was investigated. Based on homology alignment, amino acid sequence analysis, and a competitive assay, gp38, located at the tip of the long tail fiber, was identified as the RBP of phage Bp7. Using a combination of in vivo and in vitro approaches, including affinity chromatography, gene knockout mutagenesis, a phage plaque assay, and phage adsorption kinetics analysis, we identified the LamB and OmpC proteins on the surface of E. coli K-12 as specific receptors involved in the first step of reversible phage adsorption. Genomic analysis of the phage-resistant mutant strain E. coli K-12-R and complementation tests indicated that HepI of the inner core of polysaccharide acts as the second receptor recognized by phage Bp7 and is essential for successful phage infection. This observation provides an explanation of the broad host range of phage Bp7 and provides insight into phage-host interactions.IMPORTANCE The RBPs of T4-like phages are gp37 and gp38. The interaction between phage T4 RBP gp37 and its receptors has been clarified by many reports. However, the interaction between gp38 and its receptors during phage adsorption is still not completely understood. Here, we identified phage Bp7, which uses gp38 as an RBP, and provided a good model to study the phage-host interaction mechanisms in an enterobacteriophage. Our study revealed that gp38 of phage Bp7 recognizes the outer membrane proteins (OMPs) LamB and OmpC of E. coli K-12 as specific receptors and binds with them reversibly. HepI of the inner-core oligosaccharide is the second receptor and binds with phage Bp7 irreversibly to begin the infection process. Determining the interaction between the phage and its receptors will help elucidate the mechanisms of phage with a broad host range and help increase understanding of the phage infection mechanism based on gp38.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Colífagos/genética , Escherichia coli K12/virologia , Lipopolissacarídeos/metabolismo , Porinas/genética , Receptores Virais/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Evolução Biológica , Colífagos/classificação , Colífagos/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Teste de Complementação Genética , Especificidade de Hospedeiro , Lipopolissacarídeos/química , Interações Microbianas/genética , Filogenia , Porinas/metabolismo , Receptores Virais/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Curr Microbiol ; 77(9): 2465-2474, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32367280

RESUMO

A lytic Pseudomonas aeruginosa phage vB_PaeP_LP14 belonging to the family Podoviridae was isolated from infected mink. The microbiological characterization revealed that LP14 was stable at 40 to 50 °C and stable over a broad range of pH (5 to 12). The latent period was 5 min, and the burst size was 785 pfu/infected cell. The whole-genome sequencing showed that LP14 was a dsDNA virus and has a genome of 73,080 bp. The genome contained 93 predicted open reading frames (ORFs), 17 of which have known functions including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. No tRNA genes were identified. BLASTn analysis revealed that phage LP14 had a high-sequence identity (96%) with P. aeruginosa phage YH6. Both morphological characterization and genome annotation indicate that phage LP14 is a memberof the family Podoviridae genus Litunavirus. The study of phage LP14 will provide basic information for further research on treatment of P. aeruginosa infections.


Assuntos
Bacteriófagos , Podoviridae , Fagos de Pseudomonas , Animais , Bacteriófagos/genética , DNA Viral/genética , Genoma Viral , Fases de Leitura Aberta , Podoviridae/genética , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/genética
15.
Arch Virol ; 164(11): 2877-2880, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31451964

RESUMO

A temperate bacteriophage, IME1320_01, was induced by mitomycin C treatment from Corynebacterium striatum. This phage possesses a double-stranded DNA genome of 40,086 bp with a G+C content of 58%. A total of 53 putative open reading frames (ORFs) were identified in its genome. BLASTn analysis revealed that IME1320_01 had the highest sequence similarity to Corynebacterium striatum strain 216, with a genome homology coverage of 44% and highest sequence identity of 95%. The termini of the phage genome was non-redundant, with a 13-nt 3'-protruding cohesive end. To the best of our knowledge, phage IME1320_01 is the first inducible phage to be identified in Corynebacterium striatum.


Assuntos
Corynebacterium/virologia , Genoma Viral/genética , Siphoviridae/genética , Ativação Viral/efeitos dos fármacos , Composição de Bases/genética , DNA Viral/genética , Mitomicina/farmacologia , Fases de Leitura Aberta/genética , Análise de Sequência de DNA , Siphoviridae/classificação , Siphoviridae/isolamento & purificação
16.
Virus Genes ; 55(4): 532-540, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31004278

RESUMO

A novel virulent bacteriophage vB_SpuP_Spp16 (hereafter designated Spp16) that infects Salmonella enterica serovar pullorum was isolated. Transmission electron microscopy showed that Spp16 possessed an isometric polyhedral head (60 nm in diameter) and a short tail (10 nm in length) belonging to the family Podoviridae. Its complete genome was determined to be 41,832 bp, with a 39.46% GC content by next-generation sequencing. The genome contains 53 proposed open reading frames that are involved in DNA replication and modification, transcriptional regulation, phage structural and packaging proteins and bacterial lysis. No transfer RNA genes were identified. The termini of genome were determined using our previously proposed termini identification method, which suggests that this phage has redundant termini with 421 bp direct terminal repeats. BLASTn analysis revealed the highest sequence similarity with Yersinia phage phi80-18, with a genome coverage of 33% and highest sequence identity of 69%. The phylogenetic analysis indicated that Spp16 forms a distinct branch of the subfamily Autographivirinae. Comparative genomics analysis showed that the phage Spp16 should be regarded as a new subcluster within the GAP227-like cluster in the Autographivirinae subfamily. The phage Spp16 has an obligate lytic life cycle demonstrated by experimental data and genomic analysis. These results suggest that Spp16 may be a proper candidate to control diseases caused by Salmonella enterica serovar pullorum.


Assuntos
Genoma Viral , Fagos de Salmonella/genética , Salmonella enterica/virologia , Filogenia , Fagos de Salmonella/classificação , Fagos de Salmonella/isolamento & purificação , Fagos de Salmonella/ultraestrutura , Especificidade da Espécie
18.
Bone ; 185: 117132, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38789096

RESUMO

The mechanosensitivity of inflammation can alter cellular mechanotransduction. However, the underlying mechanism remains unclear. This study aims to investigate the metabolic mechanism of inflammation under mechanical force to guide tissue remodeling better. Herein, we found that inflammation hindered bone remodeling under mechanical force, accompanied by a simultaneous enhancement of oxidative phosphorylation (OXPHOS) and glycolysis. The control of metabolism direction through GNE-140 and Visomitin revealed that enhanced glycolysis might act as a compensatory mechanism to resist OXPHOS-induced osteoclastogenesis by promoting osteogenesis. The inhibited osteogenesis induced by inflammatory mechanical stimuli was concomitant with a reduced expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). PGC-1α knockdown impeded osteogenesis under mechanical force and facilitated osteoclastogenesis by enhancing OXPHOS. Conversely, PGC-1α overexpression attenuated the impairment of bone remodeling by inflammatory mechanical signals through promoting glycolysis. This process benefited from the PGC-1α regulation on the transcriptional and translational activity of lactate dehydrogenase A (LDHA) and the tight control of the extracellular acidic environment. Additionally, the increased binding between PGC-1α and LDHA proteins might contribute to the glycolysis promotion within the inflammatory mechanical environment. Notably, LDHA suppression effectively eliminated the bone repair effect mediated by PGC-1α overexpression within inflammatory mechanical environments. In conclusion, this study demonstrated a novel molecular mechanism illustrating how inflammation orchestrated glucose metabolism through glycolysis and OXPHOS to affect mechanically induced bone remodeling.


Assuntos
Remodelação Óssea , Glicólise , Inflamação , Osteogênese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Remodelação Óssea/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Osteogênese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , L-Lactato Desidrogenase/metabolismo , Fosforilação Oxidativa , Microambiente Celular , Masculino
19.
J Virol ; 86(24): 13832, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23166243

RESUMO

Chicken colibacillosis is caused by some pathogenic Escherichia coli strains. Thirty-five pathogenic antibiotic-resistant E. coli strains were used in the host range detection of bacteriophage Bp7. The phage showed a wide range of E. coli hosts (46%). The complete genome of bacteriophage Bp7 was sequenced, assembled, and analyzed. The results revealed a linear double-stranded DNA sequence of 168,066 bp harboring 791 open reading frames. The major findings from its annotation are described.


Assuntos
Colífagos/genética , Escherichia coli/virologia , Genoma Viral , Dados de Sequência Molecular , Fases de Leitura Aberta
20.
Appl Environ Microbiol ; 79(18): 5559-65, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23835183

RESUMO

Chicken-pathogenic Escherichia coli is severely endangering the poultry industry in China and worldwide, and antibiotic therapy is facing an increasing problem of antibiotic resistance. Bacteriophages can kill bacteria with no known activity in human or animal cells, making them an attractive alternative to antibiotics. In this study, we present the characteristics of a novel virulent bacteriophage, Bp7, specifically infecting pathogenic multidrug-resistant E. coli. Phage Bp7 was isolated from chicken feces. Bp7 belongs to the family Myoviridae, possessing an elongated icosahedral head and contractile sheathed tail. It has a 168-kb double-stranded DNA genome. For larger yields, its optimal multiplicity of infection (MOI) to infect E. coli was about 0.001. The latent period was 10 to 15 min, and the burst size was 90 PFU/infected cell. It was stable both at pH 5.0 to 10.0 and at 40°C or 50°C for at least 1 h. Bp7 could infect 46% of pathogenic clinical E. coli strains. Bp7 harbored 791 open reading frames (ORFs) and 263 possible genes. Among the 263 genes, 199 possessed amino acid sequence identities with ORFs of phage T4, 62 had identities with other T4-like phages, and only one lacked any database match. The genome of Bp7 manifested obvious division and rearrangement compared to phages T4, JS98, and IME08. Bp7 is a new member of the "T4-like" genus, family Myoviridae. Its wide host range, strong cell-killing activity, and high stability to pH make it an alternative to antimicrobials for controlling drug-resistant E. coli in chickens.


Assuntos
Anti-Infecciosos/administração & dosagem , Terapia Biológica/métodos , Colífagos/crescimento & desenvolvimento , Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/terapia , Myoviridae/crescimento & desenvolvimento , Animais , Galinhas , China , Colífagos/genética , Colífagos/isolamento & purificação , DNA Viral/química , DNA Viral/genética , Ordem dos Genes , Genoma Viral , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Myoviridae/genética , Myoviridae/isolamento & purificação , Análise de Sequência de DNA , Temperatura , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA